First-principles calculation of the structure and magnetic phases of hematite

被引:430
作者
Rollmann, G
Rohrbach, A
Entel, P
Hafner, J
机构
[1] Univ Duisburg Essen, Inst Theoret Phys, D-47048 Duisburg, Germany
[2] Univ Vienna, Inst Mat Phys, A-1090 Vienna, Austria
[3] Univ Vienna, Ctr Computat Mat Sci, A-1090 Vienna, Austria
关键词
D O I
10.1103/PhysRevB.69.165107
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Rhombohedral alpha-Fe2O3 has been studied by using density-functional theory (DFT) and the generalized gradient approximation (GGA). For the chosen supercell all possible magnetic configurations have been taken into account. We find an antiferromagnetic ground state at the experimental volume. This state is 388 meV/(Fe atom) below the ferromagnetic solution. For the magnetic moments of the iron atoms we obtain 3.4mu(B), which is about 1.5mu(B) below the experimentally observed value. The insulating nature of alpha-Fe2O3 is reproduced, with a band gap of 0.32 eV, compared to an experimental value of about 2.0 eV. Analysis of the density of states confirms the strong hybridization between Fe 3d and O 2p states in alpha-Fe2O3. When we consider lower volumes, we observe a transition to a metallic, ferromagnetic low-spin phase, together with a structural transition at a pressure of 14 GPa, which is not seen in experiment. In order to take into account the strong on-site Coulomb interaction U present in Fe2O3 we also performed DFT+U calculations. We find that with increasing U the size of the band gap and the magnetic moments increase, while other quantities such as equilibrium volume and Fe-Fe distances do not show a monotonic behavior. The transition observed in the GGA calculations is shifted to higher pressures and eventually vanishes for high values of U. Best overall agreement, also with respect to experimental photoemission and inverse photoemission spectra of hematite, is achieved for U=4 eV. The strength of the on-site interactions is sufficient to change the character of the gap from d-d to O-p-Fe-d.
引用
收藏
页码:165107 / 1
页数:12
相关论文
共 61 条
[1]   LINEAR METHODS IN BAND THEORY [J].
ANDERSEN, OK .
PHYSICAL REVIEW B, 1975, 12 (08) :3060-3083
[2]   EXPLICIT, 1ST-PRINCIPLES TIGHT-BINDING THEORY [J].
ANDERSEN, OK ;
JEPSEN, O .
PHYSICAL REVIEW LETTERS, 1984, 53 (27) :2571-2574
[3]  
Anderson O. L., 1995, EQUATIONS STATE SOLI, P405
[4]   Nature of the high-pressure transition in Fe2O3 hematite -: art. no. 205504 [J].
Badro, J ;
Fiquet, G ;
Struzhkin, VV ;
Somayazulu, M ;
Mao, HK ;
Shen, G ;
Le Bihan, T .
PHYSICAL REVIEW LETTERS, 2002, 89 (20)
[5]   Magnetism in FeO at megabar pressures from X-ray emission spectroscopy [J].
Badro, J ;
Struzhkin, VV ;
Shu, JF ;
Hemley, RJ ;
Mao, HK ;
Kao, CC ;
Rueff, JP ;
Shen, GY .
PHYSICAL REVIEW LETTERS, 1999, 83 (20) :4101-4104
[6]   Implementation of the projector augmented-wave LDA+U method:: Application to the electronic structure of NiO [J].
Bengone, O ;
Alouani, M ;
Blöchl, P ;
Hugel, J .
PHYSICAL REVIEW B, 2000, 62 (24) :16392-16401
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]   Magnetic properties of hematite nanoparticles [J].
Bodker, F ;
Hansen, MF ;
Koch, CB ;
Lefmann, K ;
Morup, S .
PHYSICAL REVIEW B, 2000, 61 (10) :6826-6838
[9]   Unexpected differences in the surface electronic structure of NiO and CoO observed by STM and explained by first-principles theory [J].
Castell, MR ;
Dudarev, SL ;
Briggs, GAD ;
Sutton, AP .
PHYSICAL REVIEW B, 1999, 59 (11) :7342-7345
[10]   THEORETICAL-STUDY OF ELECTRONIC, MAGNETIC, AND STRUCTURAL-PROPERTIES OF ALPHA-FE2O3 (HEMATITE) [J].
CATTI, M ;
VALERIO, G ;
DOVESI, R .
PHYSICAL REVIEW B, 1995, 51 (12) :7441-7450