The networked evolutionary algorithm: A network science perspective

被引:60
作者
Du, Wenbo [1 ]
Zhang, Mingyuan [1 ]
Ying, Wen [1 ]
Perc, Matjaz [1 ,2 ]
Tang, Ke [3 ]
Cao, Xianbin [1 ]
Wu, Dapeng [4 ]
机构
[1] Beihang Univ, Sch Elect & Informat Engn, Natl Engn Lab Big Data Applicat Technol Comprehen, Beijing 100191, Peoples R China
[2] Univ Maribor, Fac Nat Sci & Math, Koroska Cesta 160, SI-2000 Maribor, Slovenia
[3] Southern Univ Sci & Technol, Dept Comp Sci & Engn, Shenzhen Key Lab Computat Intelligence, Shenzhen 518055, Guangdong, Peoples R China
[4] Univ Florida, Dept Elect & Comp Engn, Gainesville, FL 32611 USA
基金
中国国家自然科学基金;
关键词
Evolutionary algorithm; Network system; Structure; Behavior; INFORMED PARTICLE SWARM; OPTIMIZATION;
D O I
10.1016/j.amc.2018.06.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evolutionary algorithm is one of the most popular and effective methods to solve complex non-convex optimization problems in different areas of research. In this paper, we systematically explore the evolutionary algorithm as a networked interaction system, where nodes represent information process units and connections denote information transmission links. Within this networked evolutionary algorithm framework, we analyze the effects of structure and information fusion strategies, and further implement it in three typical evolutionary algorithms, namely in the genetic algorithm, the particle swarm optimization algorithm, and in the differential evolution algorithm. Our results demonstrate that the networked evolutionary algorithm framework can significantly improve the performance of these evolutionary algorithms. Our work bridges two traditionally separate areas, evolutionary algorithms and network science, in the hope that it promotes the development of both. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 30 条
  • [1] [Anonymous], 1997, Journal of Global Optimization, DOI DOI 10.1023/A:1008202821328
  • [2] Emergence of scaling in random networks
    Barabási, AL
    Albert, R
    [J]. SCIENCE, 1999, 286 (5439) : 509 - 512
  • [3] Boyd S, 2004, CONVEX OPTIMIZATION
  • [4] Adequate is better: particle swarm optimization with limited-information
    Du, Wen-Bo
    Gao, Yang
    Liu, Chen
    Zheng, Zheng
    Wang, Zhen
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2015, 268 : 832 - 838
  • [5] Eberhart R., PARTICAL SWARM INSPR
  • [6] Engelbrecht A. P., 2007, Computational Intelligence: An Introduction, V2nd, DOI [10.1002/9780470512517, DOI 10.1002/9780470512517]
  • [7] Fister Jr I., 2014, WORLD J, V2014
  • [8] Gao Y., SCI REP
  • [9] Exploiting Social Trust Assisted Reciprocity (STAR) Toward Utility-Optimal Socially-Aware Crowdsensing
    Gong, Xiaowen
    Chen, Xu
    Zhang, Junshan
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON SIGNAL AND INFORMATION PROCESSING OVER NETWORKS, 2015, 1 (03): : 195 - 208
  • [10] Holland J. H., 1997, ADAPTATION NATURE AR