IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [41] A thermodynamics-inspired feature for anomaly detection on crowd motions in surveillance videos
    Xinfeng Zhang
    Su Yang
    Yuan Yan Tang
    Weishan Zhang
    Multimedia Tools and Applications, 2016, 75 : 8799 - 8826
  • [42] Attribute Restoration Framework for Anomaly Detection
    Ye, Fei
    Huang, Chaoqin
    Cao, Jinkun
    Li, Maosen
    Zhang, Ya
    Lu, Cewu
    IEEE TRANSACTIONS ON MULTIMEDIA, 2022, 24 : 116 - 127
  • [43] A thermodynamics-inspired feature for anomaly detection on crowd motions in surveillance videos
    Zhang, Xinfeng
    Yang, Su
    Tang, Yuan Yan
    Zhang, Weishan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2016, 75 (14) : 8799 - 8826
  • [44] Online anomaly detection in surveillance videos with asymptotic bound on false alarm rate
    Doshi, Keval
    Yilmaz, Yasin
    PATTERN RECOGNITION, 2021, 114
  • [45] An ensemble learning framework for anomaly detection in building energy consumption
    Araya, Daniel B.
    Grolinger, Katarina
    ElYamany, Hany F.
    Capretz, Miriam A. M.
    Bitsuamlak, Girma
    ENERGY AND BUILDINGS, 2017, 144 : 191 - 206
  • [46] DeepAnom: An Ensemble Deep Framework for Anomaly Detection in System Processes
    Ezeme, Okwudili M.
    Lescisin, Michael
    Mahmoud, Qusay H.
    Azim, Akramul
    ADVANCES IN ARTIFICIAL INTELLIGENCE, 2019, 11489 : 549 - 555
  • [47] Attention-based anomaly detection in multi-view surveillance videos
    Li, Qun
    Yang, Rui
    Xiao, Fu
    Bhanu, Bir
    Zhang, Feng
    KNOWLEDGE-BASED SYSTEMS, 2022, 252
  • [48] LabelGen: An Anomaly Label Generative Framework for Enhanced Graph Anomaly Detection
    Xia, Siqi
    Rajasegarar, Sutharshan
    Pan, Lei
    Leckie, Christopher
    Erfani, Sarah M.
    Chan, Jeffrey
    IEEE ACCESS, 2024, 12 : 121971 - 121982
  • [49] Anomaly detection in surveillance videos: a thematic taxonomy of deep models, review and performance analysis
    Chandrakala, S.
    Deepak, K.
    Revathy, G.
    ARTIFICIAL INTELLIGENCE REVIEW, 2023, 56 (04) : 3319 - 3368
  • [50] Anomaly detection in surveillance videos: a thematic taxonomy of deep models, review and performance analysis
    S. Chandrakala
    K. Deepak
    G. Revathy
    Artificial Intelligence Review, 2023, 56 : 3319 - 3368