IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [31] An Efficient Anomaly Recognition Framework Using an Attention Residual LSTM in Surveillance Videos
    Ullah, Waseem
    Ullah, Amin
    Hussain, Tanveer
    Khan, Zulfiqar Ahmad
    Baik, Sung Wook
    SENSORS, 2021, 21 (08)
  • [32] GssMILP for anomaly classification in surveillance videos
    Krishna, N. Satya
    Bhattu, S. Nagesh
    Somayajulu, D. V. L. N.
    Kumar, N. V. Narendra
    Reddy, K. Jaya Shankar
    EXPERT SYSTEMS WITH APPLICATIONS, 2022, 203
  • [34] A Self-Reasoning Framework for Anomaly Detection Using Video-Level Labels
    Zaheer, Muhammad Zaigham
    Mahmood, Arif
    Shin, Hochul
    Lee, Seung-Ik
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1705 - 1709
  • [35] Multi-Encoder Towards Effective Anomaly Detection in Videos
    Fang, Zhiwen
    Zhou, Joey Tianyi
    Xiao, Yang
    Li, Yanan
    Yang, Feng
    IEEE TRANSACTIONS ON MULTIMEDIA, 2021, 23 : 4106 - 4116
  • [36] Selection Biased Positive and Unlabeled Learning Method for Anomaly Detection in Surveillance Videos
    Shang, Feiyu
    Mu, Huiyu
    Qi, Shanshan
    Sun, Ruizhi
    PROCEEDINGS OF THE 2021 IEEE 24TH INTERNATIONAL CONFERENCE ON COMPUTER SUPPORTED COOPERATIVE WORK IN DESIGN (CSCWD), 2021, : 849 - 854
  • [37] Enhancing Anomaly Detection in Surveillance Videos with Transfer Learning from Action Recognition
    Liu, Kun
    Zhu, Minzhi
    Fu, Huiyuan
    Ma, Huadong
    Chua, Tat-Seng
    MM '20: PROCEEDINGS OF THE 28TH ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, 2020, : 4664 - 4668
  • [38] An ensemble approach for increased anomaly detection performance in video surveillance data
    Brax, Christoffer
    Niklasson, Lars
    Laxhammar, Rikard
    FUSION: 2009 12TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION, VOLS 1-4, 2009, : 694 - 701
  • [39] Anomaly Detection in Surveillance Videos via Memory-augmented Frame Prediction
    Yang, Rui
    Li, Qun
    Shen, Yaying
    Zhang, Ziyi
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [40] Object-Aware Skeleton-Based Anomaly Detection in Surveillance Videos
    Moriyama R.
    Kaneko N.
    Sumi K.
    Seimitsu Kogaku Kaishi/Journal of the Japan Society for Precision Engineering, 2023, 89 (12): : 934 - 941