IBaggedFCNet: An Ensemble Framework for Anomaly Detection in Surveillance Videos

被引:7
|
作者
Zahid, Yumna [1 ]
Tahir, Muhammad Atif [1 ]
Durrani, Nouman M. [1 ]
Bouridane, Ahmed [2 ]
机构
[1] Natl Univ Comp & Emerging Sci, Dept Comp Sci, Karachi Campus, Karachi 75030, Pakistan
[2] Northumbria Univ, Dept Comp & Informat Sci, Newcastle Upon Tyne NEI 8ST, Tyne & Wear, England
来源
IEEE ACCESS | 2020年 / 8卷
关键词
Videos; Feature extraction; Anomaly detection; Bagging; Surveillance; Training; Data models; feature learning; bagging ensemble;
D O I
10.1109/ACCESS.2020.3042222
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The prevalent use of surveillance cameras in public places and advancements in computer vision warrant most sought-after research in the domain of anomalous activity detection. Anomaly detection has shown promising applications for suspicious activity detection. In this paper, we propose a bagging framework IBaggedFCNet that leverages the power of ensembles for robust classification to detect anomalies in videos. Our approach, which investigates state-of-the-art Inception-v3 image classification network, requires no video segmentation prior to feature extraction that can produce unstable segmentation results and cause a high memory footprint. We show improvement empirically on multiple benchmark datasets, most prominently on the UCF-Crime dataset. Moreover, we experiment with different ensemble fusion methods, including static and dynamic techniques, and also prove our single model's predictive accuracy in localizing anomaly in surveillance videos.
引用
收藏
页码:220620 / 220630
页数:11
相关论文
共 50 条
  • [1] Anomaly Detection in Surveillance Videos
    Anala, M. R.
    Makker, Malika
    Ashok, Aakanksha
    2019 26TH INTERNATIONAL CONFERENCE ON HIGH PERFORMANCE COMPUTING, DATA AND ANALYTICS WORKSHOP (HIPCW 2019), 2019, : 93 - 98
  • [2] Cross-Epoch Learning for Weakly Supervised Anomaly Detection in Surveillance Videos
    Yu, Shenghao
    Wang, Chong
    Mao, Qiaomei
    Li, Yuqi
    Wu, Jiafei
    IEEE SIGNAL PROCESSING LETTERS, 2021, 28 : 2137 - 2141
  • [3] ENSEMBLE LEARNING USING BAGGING AND INCEPTION-V3 FOR ANOMALY DETECTION IN SURVEILLANCE VIDEOS
    Zahid, Yumna
    Tahir, Muhammad Atif
    Durrani, Muhammad Nouman
    2020 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2020, : 588 - 592
  • [4] Influence-Aware Attention Networks for Anomaly Detection in Surveillance Videos
    Zhang, Sijia
    Gong, Maoguo
    Xie, Yu
    Qin, A. K.
    Li, Hao
    Gao, Yuan
    Ong, Yew-Soon
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2022, 32 (08) : 5427 - 5437
  • [5] A Scalable and Generalised Deep Learning Framework for Anomaly Detection in Surveillance Videos
    Jebur, Sabah Abdulazeez
    Alzubaidi, Laith
    Saihood, Ahmed
    Hussein, Khalid A.
    Hoomod, Haider Kadhim
    Gu, Yuantong
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2025, 2025 (01)
  • [6] Survey on anomaly detection in surveillance videos
    Anoopa, S.
    Salim, A.
    MATERIALS TODAY-PROCEEDINGS, 2022, 58 : 162 - 167
  • [7] A Comprehensive Survey of Machine Learning Methods for Surveillance Videos Anomaly Detection
    Choudhry, Nomica
    Abawajy, Jemal
    Huda, Shamsul
    Rao, Imran
    IEEE ACCESS, 2023, 11 : 114680 - 114713
  • [8] Anomaly detection in surveillance videos: A survey
    Wang Z.
    Zhang Y.
    Qinghua Daxue Xuebao/Journal of Tsinghua University, 2020, 60 (06): : 518 - 529
  • [9] A Discriminative Framework for Anomaly Detection in Large Videos
    Del Giorno, Allison
    Bagnell, J. Andrew
    Hebert, Martial
    COMPUTER VISION - ECCV 2016, PT V, 2016, 9909 : 334 - 349
  • [10] Weakly Supervised Anomaly Detection in Videos Considering the Openness of Events
    Zhang, Chen
    Li, Guorong
    Xu, Qianqian
    Zhang, Xinfeng
    Su, Li
    Huang, Qingming
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (11) : 21687 - 21699