A pseudospectral fictitious point method for high order initial-boundary value problems

被引:27
作者
Fornberg, Bengt [1 ]
机构
[1] Univ Colorado, Dept Appl Math, Boulder, CO 80309 USA
关键词
spurious eigenvalues; PDE; pseudospectral method; Kuramoto-Sivashinsky equation; time-space corner singularities;
D O I
10.1137/040611252
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
When pseudospectral approximations are used for space derivatives, one often encounters spurious eigenvalues. These can lead to severe time stepping difficulties for PDEs. This is especially the case for equations with high order derivatives in space, requiring multiple conditions at one or both boundaries. We note here that a very simple-to-implement fictitious point approach circumvents most of these difficulties. The new approach is tested on the Kuramoto-Sivashinsky equation and on a dispersive linear PDE featuring a time-space corner singularity.
引用
收藏
页码:1716 / 1729
页数:14
相关论文
共 38 条
[1]  
[Anonymous], 2000, CHEBYSHEV FOURIER SP
[2]   IMPLICIT EXPLICIT METHODS FOR TIME-DEPENDENT PARTIAL-DIFFERENTIAL EQUATIONS [J].
ASCHER, UM ;
RUUTH, SJ ;
WETTON, BTR .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1995, 32 (03) :797-823
[3]   Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations [J].
Ascher, UM ;
Ruuth, SJ ;
Spiteri, RJ .
APPLIED NUMERICAL MATHEMATICS, 1997, 25 (2-3) :151-167
[4]   A new class of time discretization schemes for the solution of nonlinear PDEs [J].
Beylkin, G ;
Keiser, JM ;
Vozovoi, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 147 (02) :362-387
[5]   Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods [J].
Boyd, JP ;
Flyer, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1999, 175 (3-4) :281-309
[6]  
Canuto C., 2012, Spectral Methods: Fundamentals in Single Domains
[7]   Exponential time differencing for stiff systems [J].
Cox, SM ;
Matthews, PC .
JOURNAL OF COMPUTATIONAL PHYSICS, 2002, 176 (02) :430-455
[8]   A block pseudospectral method for Maxwell's equations - I. One-dimensional case [J].
Driscoll, TA ;
Fornberg, B .
JOURNAL OF COMPUTATIONAL PHYSICS, 1998, 140 (01) :47-65
[9]   Block pseudospectral methods for Maxwell's equations - II: Two-dimensional, discontinuous-coefficient case [J].
Driscoll, TA ;
Fornberg, B .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 1999, 21 (03) :1146-1167
[10]   On the nature of initial-boundary value solutions for dispersive equations [J].
Flyer, N ;
Fornberg, B .
SIAM JOURNAL ON APPLIED MATHEMATICS, 2003, 64 (02) :546-564