Half-cell and full-cell investigations of 3D hierarchical MoS2/graphene composite on anode performance in lithium-ion batteries

被引:53
|
作者
Yuan, Guanghui [1 ,2 ]
Wang, Gang [1 ]
Wang, Hui [3 ]
Bai, Jintao [1 ]
机构
[1] NW Univ Xian, Natl Key Lab Photoelect Technol & Funct Mat Cultu, Natl Photoelect Technol & Funct Mat & Applicat In, Inst Photon & Photon Technol,Phys Dept, Xian 710069, Peoples R China
[2] Ankang Univ, Dept Chem & Chem Engn, Ankang 725000, Shaanxi, Peoples R China
[3] NW Univ Xian, Coll Chem & Mat Sci, Minist Educ, Key Lab Synthet & Nat Funct Mol Chem, Xian 710069, Peoples R China
基金
中国国家自然科学基金;
关键词
MoS2/graphene composite; Full-cell investigation; Anode material; Electrochemical performances; FEW-LAYER MOS2; FACILE SYNTHESIS; MOS2-GRAPHENE COMPOSITES; GRAPHENE NANOSHEETS; BINDER-FREE; CARBON; NANOCOMPOSITES; NANOPARTICLES; CLOTH; OXIDE;
D O I
10.1016/j.jallcom.2015.11.079
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A novel 3D hierarchical MoS2/graphene (MoS2/GN) composite is designed by a facile one-step hydrothermal co-assembling method without using any templates. SEM and TEM images show that the MoS2/GN flower-like particles are self-assembled by MoS2 nanoflakes and graphene nanosheets. According to the hydrothermal method used and characterization results observed, the formation process is proposed. Electrochemical performances of the MoS2/GN composite as anode active material in Lithium-ion batteries (LIBs) is investigated in both MoS2/GN//Li half-cells and MoS2/GN//LiCoO2 full-cells. The MoS2/GN composite delivers high initial discharge capacities of 1240 mAh g(-1) and good capacity retentions (about 80%) after more than 80 cycles in half-cells. Furthermore, the assembled MoS2/GN//LiCoO2 full-cell delivers high initial discharge capacities of 1203 mAh g(-1). The excellent lithium storage performances of the obtained MoS2/GN composite can be mainly attributed to the designed novel structure of the composite. The cross-linked graphene nanosheets, the anchoring MoS2 nanoflakes and the synergistic effects between them make the composite good conductivity, enough buffering space for the volume change, and shortened ionic transport length. This work clearly demonstrates that the MoS2/GN composite is a promising alternative material for anode in the LIB applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:62 / 72
页数:11
相关论文
共 50 条
  • [21] In situ formation of MoS2/C nanocomposite as an anode for high-performance lithium-ion batteries
    Lee, Gyu-Ho
    Kim, Si-Jin
    Kim, Min-Cheol
    Choe, Hui-Seon
    Kim, Da-Mi
    Han, Sang-Beom
    Kwak, Da-Hee
    Jeong, Jae Hyun
    Park, Kyung-Won
    RSC ADVANCES, 2016, 6 (95): : 92259 - 92266
  • [22] Hollow MoS2/rGO composites as high-performance anode materials for lithium-ion batteries
    Xue, Haoliang
    Jiao, Qingze
    Du, Jinyu
    Wang, Shanshan
    Feng, Caihong
    Wu, Qin
    Li, Hansheng
    Lu, Qinliang
    Shi, Daxin
    Zhao, Yun
    IONICS, 2019, 25 (10) : 4659 - 4666
  • [23] Facile synthesis of hierarchical hollow MoS2 nanotubes as anode materials for high-performance lithium-ion batteries
    Li, Guangda
    Zeng, Xiaoying
    Zhang, Tiandong
    Ma, Wanyong
    Li, Wenpeng
    Wang, Meng
    CRYSTENGCOMM, 2014, 16 (47): : 10754 - 10759
  • [24] Effects of graphene on MoO2-MoS2 composite as anode material for lithium-ion batteries
    Hwang, Moon-Jin
    Kim, Kwang Man
    Ryu, Kwang-Sun
    JOURNAL OF ELECTROCERAMICS, 2014, 33 (3-4) : 239 - 245
  • [25] Few-Layered MoS2/Acetylene Black Composite as an Efficient Anode Material for Lithium-Ion Batteries
    Badam, Rajashekar
    Joshi, Prerna
    Vedarajan, Raman
    Natarajan, Rajalakshmi
    Matsumi, Noriyoshi
    NANOSCALE RESEARCH LETTERS, 2017, 12
  • [26] 3D composites of layered MoS2 and graphene nanoribbons for high performance lithium-ion battery anodes
    Tian, Ran
    Wang, Weiqiang
    Huang, Yaolin
    Duan, Huanan
    Guo, Yiping
    Kang, Hongmei
    Li, Hua
    Liu, Hezhou
    JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (34) : 13148 - 13154
  • [27] Graphene enhanced silicon/carbon composite as anode for high performance lithium-ion batteries
    Li, Xiaohui
    Wu, Mengqiang
    Feng, Tingting
    Xu, Ziqiang
    Qin, Jingang
    Chen, Cheng
    Tu, Chengyang
    Wang, Dongxia
    RSC ADVANCES, 2017, 7 (76) : 48286 - 48293
  • [28] 3D hollow framework of GeOx with ultrathin shell for improved anode performance in lithium-ion batteries
    Fang, Zhen
    Qiang, Tingting
    Fang, Jiaxin
    Song, Yixuan
    Ma, Qiuyang
    Ye, Ming
    Qiang, Feiqiang
    Geng, Baoyou
    ELECTROCHIMICA ACTA, 2015, 151 : 453 - 458
  • [29] A flexible 3D graphene@CNT@MoS2 hybrid foam anode for high-performance lithium-ion battery
    Ren, Jing
    Ren, Rui-Peng
    Lv, Yong-Kang
    CHEMICAL ENGINEERING JOURNAL, 2018, 353 : 419 - 424
  • [30] Three-Dimensional Crumpled Reduced Graphene Oxide/MoS2 Nanoflowers: A Stable Anode for Lithium-Ion Batteries
    Xiong, Fangyu
    Cai, Zhengyang
    Qu, Longbing
    Zhang, Pengfei
    Yuan, Zefang
    Asare, Owusu Kwadwo
    Xu, Wangwang
    Lin, Chao
    Mai, Liqiang
    ACS APPLIED MATERIALS & INTERFACES, 2015, 7 (23) : 12625 - 12630