Minimum size of a graph or digraph of given radius

被引:8
作者
Dankelmann, Peter [1 ]
Volkmann, Lutz [2 ]
机构
[1] Univ KwaZulu Natal, Sch Math Sci, ZA-4000 Durban, South Africa
[2] Rhein Westfal TH Aachen, Lehrstuhl Math 2, D-52056 Aachen, Germany
关键词
Interconnection networks; Graph; Digraph; Radius; Minimum degree; Size;
D O I
10.1016/j.ipl.2009.06.001
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper we show that a connected graph of order n, radius r and minimum degree delta has at least 1/2 (delta n + (n-1)(delta-2)/(delta-1)(r)-1) edges, for n large enough, and this bound is sharp. We also present a similar result for digraphs. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:971 / 973
页数:3
相关论文
共 15 条
[1]  
Dankelmann P, 2005, UTILITAS MATHEMATICA, V67, P205
[2]  
DANKELMANN P, DISTANCES K 2 UNPUB
[3]  
Dankelmann P, 2007, UTILITAS MATHEMATICA, V73, P207
[4]  
DANKELMANN R, NUMBER EDGES B UNPUB
[5]  
Egawa Y, 1999, ARS COMBINATORIA, V51, P89
[6]  
ERDOS P, 1989, J COMB THEORY B, V47, P73
[7]   MAXIMUM INDUCED TREES IN GRAPHS [J].
ERDOS, P ;
SAKS, M ;
SOS, VT .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1986, 41 (01) :61-79
[8]  
Fajtlowicz S., 1990, WRITTEN WALL CONJECT
[9]  
Fajtlowicz S., 1986, Congr. Numer., V55, P51
[10]  
GOLDBERG MK, 1965, USP MAT NAUK, V20, P203