Recent development of double chamber microbial fuel cell for hexavalent chromium waste removal

被引:36
|
作者
Asranudin, Asranudin [1 ]
Ediati, Ratna [1 ]
Sugiarso, Djarot [1 ]
Prasetyoko, Didik [1 ]
Bahruji, Hasliza [2 ]
Hidayat, Alvin Romadhoni Putra [1 ]
Widyanto, Alvin Rahmad [1 ]
Sulistiono, Dety Oktavia [1 ]
Putro, Herdayanto Sulistyo [1 ]
Purnomo, Adi Setyo [1 ]
Ali, Badrut Tamam Ibnu [1 ]
Caralin, Irmariza Shafitri [1 ]
机构
[1] Inst Teknol Sepuluh Nopember, Fac Sci & Data Analyt, Dept Chem, Surabaya 60111, Indonesia
[2] Univ Brunei Darussalam, Ctr Adv Mat & Energy Sci, Jalan Tungku Link,, BE-1410 Gadong, Brunei
来源
JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING | 2022年 / 10卷 / 03期
关键词
Microbial fuel cells; Double-chamber system; Microorganisms; Hexavalent chromium; Wastewater treatment; Adsorption and ion; PROTON-EXCHANGE MEMBRANE; ENHANCED CR(VI) REDUCTION; ELECTRON-SHUTTLE MEDIATOR; HEAVY-METAL IONS; POWER-GENERATION; ELECTRICITY-GENERATION; ENERGY RECOVERY; WATER TREATMENT; ELECTROCHEMICAL PERFORMANCE; BIOELECTRICITY GENERATION;
D O I
10.1016/j.jece.2022.107505
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Hexavalent chromium (Cr(VI) is a highly toxic and carcinogenic form of chromium (Cr) metal and can enter the environment through improper treatment of industrial wastewater. Investigations on the removal of Cr(VI) aims to produce a sustainable method to efficiently reduce Cr(VI) to Cr(III). Microbial fuel cells (MFCs) is a green technology driven by sustainable energy from biomass waste, which is ideal for the reduction of Cr(VI). Optimization of the MFC performance requires an understanding on the working principles of MFC. Therefore, this article provides a comprehensive review of Cr(VI) reduction in wastewater using the general MFC system, the plant microbial fuel cell (PMFC) system, the soil microbial fuel cell (sMFC) system, and hybrid MFC systems. In addition, factors that influences the efficiency of Cr(VI) reduction, namely the concentration and composition of wastewater, the organic substrates, the properties of the electrodes, the pH and the temperature of the electrolytes, the effect of aeration (oxygen content), the stability of the membrane/separator and, the microorganisms will be discussed. Finally, this review will outline challenges, future prospects, and strategies for a largescale development of double-chamber MFCs.
引用
收藏
页数:26
相关论文
共 50 条
  • [1] Recent Development in Nanoparticle-Assisted Microbial Fuel Cell for Enhanced Reduction of Chromium
    Vijay Samuel, G.
    Dey, Nibedita
    Govindarajan, R.
    Sathishkumar, Kuppusamy
    Govarthanan, Muthusamy
    Sakthidasan, J.
    Sandhya, J.
    Sundeep, Lakshmi
    CURRENT MICROBIOLOGY, 2024, 81 (09)
  • [2] Removal of hexavalent chromium in dual-chamber microbial fuel cells separated by different ion exchange membranes
    Wang, Heming
    Song, Xueyong
    Zhang, Huihui
    Tan, Pan
    Kong, Fanxin
    JOURNAL OF HAZARDOUS MATERIALS, 2020, 384
  • [3] FeS@rGO nanocomposites as electrocatalysts for enhanced chromium removal and clean energy generation by microbial fuel cell
    Ali, Jafar
    Wang, Lei
    Waseem, Hassan
    Djellabi, Ridha
    Oladoja, N. A.
    Pan, Gang
    CHEMICAL ENGINEERING JOURNAL, 2020, 384
  • [4] Microbial fuel cells for bioelectricity generation through reduction of hexavalent chromium in wastewater: A review
    Uddin, Md. Jamal
    Jeong, Yeon-Koo
    Lee, Wontae
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (20) : 11458 - 11481
  • [5] Fundamental understanding of microbial fuel cell technology: Recent development and challenges
    Dwivedi, Kavya Arun
    Huang, Song-Jeng
    Wang, Chin-Tsan
    Kumar, Sunil
    CHEMOSPHERE, 2022, 288
  • [6] Microbial Assisted Hexavalent Chromium Removal in Bioelectrochemical Systems
    Beretta, Gabriele
    Daghio, Matteo
    Tofalos, Anna Espinoza
    Franzetti, Andrea
    Mastorgio, Andrea Filippo
    Saponaro, Sabrina
    Sezenna, Elena
    WATER, 2020, 12 (02)
  • [7] Treatment mechanism of hexavalent chromium wastewater in constructed wetland-microbial fuel cell coupling system
    Shi, Yucui
    Tang, Gang
    You, Shaohong
    Jiang, Pingping
    Zhang, Xuehong
    Deng, Zhenliang
    FRONTIERS IN ENVIRONMENTAL SCIENCE, 2022, 10
  • [8] A recent development of low-cost membranes for microbial fuel cell applications
    Jenani, Ravi
    Karishmaa, Sridhar
    Ponnusami, A. Babu
    Kumar, P. Senthil
    Rangasamy, Gayathri
    DESALINATION AND WATER TREATMENT, 2024, 320
  • [9] Effect of acclimatization on hexavalent chromium reduction in a biocathode microbial fuel cell
    Wu, Xiayuan
    Zhu, Xujun
    Song, Tianshun
    Zhang, Lixiong
    Jia, Honghua
    Wei, Ping
    BIORESOURCE TECHNOLOGY, 2015, 180 : 185 - 191
  • [10] Hexavalent chromium as a cathodic electron acceptor in a bipolar membrane microbial fuel cell with the simultaneous treatment of electroplating wastewater
    Kim, Changman
    Lee, Cho Rong
    Song, Young Eun
    Heo, Jinhee
    Choi, Sung Mook
    Lim, Dong-Ha
    Cho, Jaehoon
    Park, Chulhwan
    Jang, Min
    Kim, Jung Rae
    CHEMICAL ENGINEERING JOURNAL, 2017, 328 : 703 - 707