A 4.6-ppm/°C High-Order Curvature Compensated Bandgap Reference for BMIC

被引:60
|
作者
Zhu, Guangqian [1 ]
Yang, Yintang [1 ]
Zhang, Qidong [1 ]
机构
[1] Xidian Univ, Sch Microelect, Xian 710071, Shaanxi, Peoples R China
关键词
Low-temperature coefficient; voltage reference; high-order curvature compensation; CMOS VOLTAGE REFERENCE;
D O I
10.1109/TCSII.2018.2889808
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This brief presents a high precision high-order curvature-compensated bandgap voltage reference (BGR) with a 3.11-V output voltage for battery-management integrated circuits. The proposed circuit utilizes the exponential characteristics of the base current and the resistance between bases of bipolar transistors to perform corrections. The curvature of subthreshold-operating MOSFETs is considered to further compensate for high-order temperature effects over a wide temperature range of 170 degrees C. Test results for the proposed BGR fabricated utilizing a standard 0.18-mu m BiCMOS process demonstrate that its line regulation is approximately 0.31 mV/V in a supply voltage range of 4.2-6.0 V. with 4-bit trimming, a temperature coefficient of 4.6 ppm/degrees C is obtained in the range of -40 degrees C to 130 degrees C. The active area of the proposed BGR is 634 x 351 mu m.
引用
收藏
页码:1492 / 1496
页数:5
相关论文
共 50 条
  • [41] A 1.6-V 17-μA 5.2-ppm/°C bandgap reference with mutative curvature-compensation
    Zhou, Zekun
    Shi, Yue
    Zhu, Peisheng
    Ma, Yingqian
    Wang, Huiying
    Ming, Xin
    Zhang, Bo
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2012, 99 (04) : 519 - 530
  • [42] A 0.55 V Bandgap Reference with a 59 ppm/°C Temperature Coefficient
    Nagulapalli, R.
    Hayatleh, K.
    Barker, S.
    Tammam, A. A.
    Georgiou, P.
    Lidgey, F. J.
    JOURNAL OF CIRCUITS SYSTEMS AND COMPUTERS, 2019, 28 (07)
  • [43] An Ultra-Low Power High-Order Temperature-Compensated CMOS Voltage Reference
    de Oliveira, Arthur Campos
    Cordova, David
    Klimach, Hamilton
    Bampi, Sergio
    2017 IEEE 15TH INTERNATIONAL NEW CIRCUITS AND SYSTEMS CONFERENCE (NEWCAS), 2017, : 13 - 16
  • [44] A 2.87 ppm/°C 65 nm CMOS bandgap reference with nonlinearity compensation
    Tong Xingyuan
    Zhu Zhangming
    Yang Yintang
    INTERNATIONAL JOURNAL OF ELECTRONICS, 2011, 98 (09) : 1269 - 1279
  • [45] A Resistorless Voltage Reference with High-order Temperature Curvature Compensation in 55 nm CMOS Process
    Wu, Kejun
    Zhang, Yang
    Zhang, Qihui
    He, Guang
    Li, Jing
    Ning, Ning
    Liu, Yang
    Yu, Qi
    PROCEEDINGS OF THE 2017 5TH INTERNATIONAL CONFERENCE ON MECHATRONICS, MATERIALS, CHEMISTRY AND COMPUTER ENGINEERING (ICMMCCE 2017), 2017, 141 : 1210 - 1216
  • [46] A Resistorless High-Precision Compensated CMOS Bandgap Voltage Reference
    Zhou, Ze-Kun
    Shi, Yue
    Wang, Yao
    Li, Nie
    Xiao, Zhiping
    Wang, Yunkun
    Liu, Xiaolin
    Wang, Zhuo
    Zhang, Bo
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (01) : 428 - 437
  • [47] A 6.435-nW, 26.2-ppm/°C hybrid bandgap reference with stacked ΔVGS compensation in sub-threshold region
    Wang, Lidan
    MICROELECTRONICS JOURNAL, 2023, 138
  • [48] Nanopower CMOS sub-bandgap reference with 11 ppm/°C temperature coefficient
    Yan, W.
    Li, W.
    Liu, R.
    ELECTRONICS LETTERS, 2009, 45 (12) : 627 - 628
  • [49] A 3.5 ppm /°C 0.85V Bandgap Reference Circuit without Resistors
    Wang, Jing
    Li, Qiang
    Ding, Li
    Shinohara, Hirofumi
    Inoue, Yasuaki
    IEICE TRANSACTIONS ON FUNDAMENTALS OF ELECTRONICS COMMUNICATIONS AND COMPUTER SCIENCES, 2016, E99A (07) : 1430 - 1437
  • [50] A temperature-compensated bandgap voltage reference circuit for high precision applications
    Paul, R
    Patra, A
    PROCEEDINGS OF THE IEEE INDICON 2004, 2004, : 553 - 556