Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier

被引:43
作者
Kaka, Hussam [1 ]
Zhang, Euan [2 ]
Khan, Nazir [2 ]
机构
[1] McMaster Univ, Dept Radiol, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada
[2] McMaster Univ, Hamilton Gen Hosp, Dept Radiol, Hamilton, ON, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2021年 / 72卷 / 01期
关键词
artificial; intelligence; deep; learning; neuroradiology; CONVOLUTIONAL NEURAL-NETWORKS; ANEURYSMS; SCLEROSIS;
D O I
10.1177/0846537120954293
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
There have been many recently published studies exploring machine learning (ML) and deep learning applications within neuroradiology. The improvement in performance of these techniques has resulted in an ever-increasing number of commercially available tools for the neuroradiologist. In this narrative review, recent publications exploring ML in neuroradiology are assessed with a focus on several key clinical domains. In particular, major advances are reviewed in the context of: (1) intracranial hemorrhage detection, (2) stroke imaging, (3) intracranial aneurysm screening, (4) multiple sclerosis imaging, (5) neuro-oncology, (6) head and tumor imaging, and (7) spine imaging.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 64 条
  • [51] CT Reconstruction Levels Affect Automated and Reader-Based ASPECTS Ratings in Acute Ischemic Stroke
    Seker, Fatih
    Pfaff, Johannes
    Nagel, Simon
    Vollherbst, Dominik
    Gerry, Stephen
    Moehlenbruch, Markus A.
    Bendszus, Martin
    Herweh, Christian
    [J]. JOURNAL OF NEUROIMAGING, 2019, 29 (01) : 62 - 64
  • [52] Optimizing Neuro-Oncology Imaging: A Review of Deep Learning Approaches for Glioma Imaging
    Shaver, Madeleine M.
    Kohanteb, Paul A.
    Chiou, Catherine
    Bardis, Michelle D.
    Chantaduly, Chanon
    Bota, Daniela
    Filippi, Christopher G.
    Weinberg, Brent
    Grinband, Jack
    Chow, Daniel S.
    Chang, Peter D.
    [J]. CANCERS, 2019, 11 (06)
  • [53] Deep neural networks for automatic detection of osteoporotic vertebral fractures on CT scans
    Tomita, Naofumi
    Cheung, Yvonne Y.
    Hassanpour, Saeed
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2018, 98 : 8 - 15
  • [54] Deep Learning for MR Angiography: Automated Detection of Cerebral Aneurysms
    Ueda, Daiju
    Yamamoto, Akira
    Nishimori, Masataka
    Shimono, Taro
    Doishita, Satoshi
    Shimazaki, Akitoshi
    Katayama, Yutaka
    Fukumoto, Shinya
    Choppin, Antoine
    Shimahara, Yuki
    Miki, Yukio
    [J]. RADIOLOGY, 2019, 290 (01) : 187 - 194
  • [55] Subarachnoid haemorrhage
    van Gijn, Jan
    Kerr, Richard S.
    Rinkel, Gabriel J. E.
    [J]. LANCET, 2007, 369 (9558) : 306 - 318
  • [56] Prevalence of unruptured intracranial aneurysms, with emphasis on sex, age, comorbidity, country, and time period: a systematic review and meta-analysis
    Vlak, Monique H. M.
    Algra, Ale
    Brandenburg, Raya
    Rinkel, Gabriel J. E.
    [J]. LANCET NEUROLOGY, 2011, 10 (07) : 626 - 636
  • [57] Multiple Sclerosis Identification by 14-Layer Convolutional Neural Network With Batch Normalization, Dropout, and Stochastic Pooling
    Wang, Shui-Hua
    Tang, Chaosheng
    Sun, Junding
    Yang, Jingyuan
    Huang, Chenxi
    Phillips, Preetha
    Zhang, Yu-Dong
    [J]. FRONTIERS IN NEUROSCIENCE, 2018, 12
  • [58] Whitehead W, 2018, I S BIOMED IMAGING, P868, DOI 10.1109/ISBI.2018.8363709
  • [59] IntrA: 3D Intracranial Aneurysm Dataset for Deep Learning
    Yang, Xi
    Xia, Ding
    Kin, Taichi
    Igarashi, Takeo
    [J]. 2020 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2020, : 2653 - 2663
  • [60] Deep Learning in Neuroradiology: A Systematic Review of Current Algorithms and Approaches for the New Wave of Imaging Technology
    Yao, Anthony D.
    Cheng, Derrick L.
    Pan, Ian
    Kitamura, Felipe
    [J]. RADIOLOGY-ARTIFICIAL INTELLIGENCE, 2020, 2 (02)