Artificial Intelligence and Deep Learning in Neuroradiology: Exploring the New Frontier

被引:43
作者
Kaka, Hussam [1 ]
Zhang, Euan [2 ]
Khan, Nazir [2 ]
机构
[1] McMaster Univ, Dept Radiol, 1200 Main St West, Hamilton, ON L8N 3Z5, Canada
[2] McMaster Univ, Hamilton Gen Hosp, Dept Radiol, Hamilton, ON, Canada
来源
CANADIAN ASSOCIATION OF RADIOLOGISTS JOURNAL-JOURNAL DE L ASSOCIATION CANADIENNE DES RADIOLOGISTES | 2021年 / 72卷 / 01期
关键词
artificial; intelligence; deep; learning; neuroradiology; CONVOLUTIONAL NEURAL-NETWORKS; ANEURYSMS; SCLEROSIS;
D O I
10.1177/0846537120954293
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
There have been many recently published studies exploring machine learning (ML) and deep learning applications within neuroradiology. The improvement in performance of these techniques has resulted in an ever-increasing number of commercially available tools for the neuroradiologist. In this narrative review, recent publications exploring ML in neuroradiology are assessed with a focus on several key clinical domains. In particular, major advances are reviewed in the context of: (1) intracranial hemorrhage detection, (2) stroke imaging, (3) intracranial aneurysm screening, (4) multiple sclerosis imaging, (5) neuro-oncology, (6) head and tumor imaging, and (7) spine imaging.
引用
收藏
页码:35 / 44
页数:10
相关论文
共 64 条
  • [1] Applications of artificial intelligence in neuro-oncology
    Aneja, Sanjay
    Chang, Enoch
    Omuro, Antonio
    [J]. CURRENT OPINION IN NEUROLOGY, 2019, 32 (06) : 850 - 856
  • [2] [Anonymous], 2015, arXiv preprint arXiv:1511.06068
  • [3] Advanced machine learning in action: identification of intracranial hemorrhage on computed tomography scans of the head with clinical workflow integration
    Arbabshirani, Mohammad R.
    Fornwalt, Brandon K.
    Mongelluzzo, Gino J.
    Suever, Jonathan D.
    Geise, Brandon D.
    Patel, Aalpen A.
    Moore, Gregory J.
    [J]. NPJ DIGITAL MEDICINE, 2018, 1
  • [4] Compression Fractures Detectionon CT
    Bar, Amir
    Wolf, Lior
    Amitai, Orna Bergman
    Toledano, Eyal
    Elnekave, Eldad
    [J]. MEDICAL IMAGING 2017: COMPUTER-AIDED DIAGNOSIS, 2017, 10134
  • [5] Validity and reliability of a quantitative computed tomography score in predicting outcome of hyperacute stroke before thrombolytic therapy
    Barber, PA
    Demchuk, AM
    Zhang, JJ
    Buchan, AM
    [J]. LANCET, 2000, 355 (9216) : 1670 - 1674
  • [6] Hybrid 3D/2D Convolutional Neural Network for Hemorrhage Evaluation on Head CT
    Chang, P. D.
    Kuoy, E.
    Grinband, J.
    Weinberg, B. D.
    Thompson, M.
    Homo, R.
    Chen, J.
    Abcede, H.
    Shafie, M.
    Sugrue, L.
    Filippi, C. G.
    Su, M. -Y.
    Yu, W.
    Hess, C.
    Chow, D.
    [J]. AMERICAN JOURNAL OF NEURORADIOLOGY, 2018, 39 (09) : 1609 - 1616
  • [7] An Automated and Accurate Spine Curve Analysis System
    Chen, Bo
    Xu, Qiuhao
    Wang, Liansheng
    Leung, Stephanie
    Chung, Jonathan
    Li, Shuo
    [J]. IEEE ACCESS, 2019, 7 : 124596 - 124605
  • [8] Dual-force convolutional neural networks for accurate brain tumor segmentation
    Chen, Shengcong
    Ding, Changxing
    Liu, Minfeng
    [J]. PATTERN RECOGNITION, 2019, 88 : 90 - 100
  • [9] Prediction of IDH genotype in gliomas with dynamic susceptibility contrast perfusion MR imaging using an explainable recurrent neural network
    Choi, Kyu Sung
    Choi, Seung Hong
    Jeong, Bumseok
    [J]. NEURO-ONCOLOGY, 2019, 21 (09) : 1197 - 1209
  • [10] Head and Neck Cancer Tumor Segmentation Using Support Vector Machine in Dynamic Contrast-Enhanced MRI
    Deng, Wei
    Luo, Liangping
    Lin, Xiaoyi
    Fang, Tianqi
    Liu, Dexiang
    Dan, Guo
    Chen, Hanwei
    [J]. CONTRAST MEDIA & MOLECULAR IMAGING, 2017,