Thermodynamically-consistent derivation and computation of twinning and fracture in brittle materials by means of phase-field approaches in the finite element method

被引:17
作者
Amirian, Benhour [1 ]
Jafarzadeh, Hossein [2 ,3 ]
Abali, Bilen Emek [4 ]
Reali, Alessandro [2 ]
Hogan, James David [1 ]
机构
[1] Univ Alberta, Dept Mech Engn, Edmonton, AB T6G 2R3, Canada
[2] Univ Pavia, Dept Civil Engn & Architecture, I-27100 Pavia, Italy
[3] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat ICAMS, D-44801 Bochum, Germany
[4] Uppsala Univ, Dept Mat Sci & Engn, S-75121 Uppsala, Sweden
基金
加拿大自然科学与工程研究理事会;
关键词
Anisotropic brittle materials; Finite element method; Fracture mechanics; Phase-field method; Twinning; CRYSTAL PLASTICITY; CRACK-PROPAGATION; ELASTIC-CONSTANTS; VARIATIONAL APPROACH; GRADIENT DAMAGE; STRAIN-ENERGY; MODEL; DEFORMATION; TRANSFORMATIONS; SIMULATION;
D O I
10.1016/j.ijsolstr.2022.111789
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
A theoretical-computational framework is proposed for predicting the failure behavior of two anisotropic brittle materials, namely, single crystal magnesium and boron carbide. Constitutive equations are derived, in both small and large deformations, by using thermodynamics in order to establish a fully coupled and transient twin and crack system. To study the common deformation mechanisms (e.g., twinning and fracture), which can be caused by extreme mechanical loading, a monolithically-solved Ginzburg-Landau-based phase-field theory coupled with the mechanical equilibrium equation is implemented in a finite element simulation framework for the following problems: (i) twin evolution in two-dimensional single crystal magnesium and boron carbide under simple shear deformation; (ii) crack-induced twinning for magnesium under pure mode I and mode II loading; and (iii) study of fracture in homogeneous single crystal boron carbide under biaxial compressive loading. The results are verified by a steady-state phase-field approach and validated by available experimental data in the literature. The success of this computational method relies on using two distinct phase-field (order) parameters related to fracture and twinning. A finite element method-based code is developed within the Python-based open-source platform FEniCS. We make the code publicly available and the developed algorithm may be extended for the study of phase transformations under dynamic loading or thermally-activated mechanisms, where the competition between various deformation mechanisms is accounted for within the current comprehensive modeling approach.
引用
收藏
页数:20
相关论文
共 50 条
  • [31] A Thermodynamically Consistent Phase-Field Lattice Boltzmann Method for Two-Phase Electrohydrodynamic Flows
    Xiong, Fang
    Wang, Lei
    Huang, Jiangxu
    Luo, Kang
    JOURNAL OF SCIENTIFIC COMPUTING, 2025, 103 (01)
  • [32] Adaptive finite element modeling of phase-field fracture driven by hydrogen embrittlement
    Dinachandra, Moirangthem
    Alankar, Alankar
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 391
  • [33] Thermodynamically consistent phase-field modeling of elastocaloric effect: Indirect vs direct method
    Tang, Wei
    Gong, Qihua
    Yi, Min
    Xu, Bai-Xiang
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2025, 291
  • [34] Phase-field modeling of brittle fracture using an efficient virtual element scheme
    Aldakheel, Fadi
    Hudobivnik, Blaz
    Hussein, Ali
    Wriggers, Peter
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 341 : 443 - 466
  • [35] Phase-field modeling of brittle anisotropic fracture in polycrystalline materials under combined thermo-mechanical loadings
    Kiran, Raj
    Choudhary, Krishana
    Nguyen-Thanh, Nhon
    COMPUTERS & STRUCTURES, 2025, 308
  • [36] A combined finite element-finite volume framework for phase-field fracture
    Sargado, Juan Michael
    Keilegavlen, Eirik
    Berre, Inga
    Nordbotten, Jan Martin
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2021, 373
  • [37] A phase-field formulation for fracture in ductile materials: Finite defonnation balance law derivation, plastic degradation, and stress triaxiality effects
    Borden, Michael J.
    Hughes, Thomas J. R.
    Landis, Chad M.
    Anvari, Amin
    Lee, Isaac J.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 312 : 130 - 166
  • [38] A phase-field modeling method for the mixed-mode fracture of brittle materials based on spectral decomposition
    Wang, Feiyang
    Shao, Jianfu
    Huang, Hongwei
    ENGINEERING FRACTURE MECHANICS, 2021, 242
  • [39] Phase-field modeling of brittle fracture using automatically oriented exponential finite elements
    Sidharth, P. C.
    Rao, B. N.
    INTERNATIONAL JOURNAL OF FRACTURE, 2023, 242 (02) : 169 - 189
  • [40] ADAPTIVE PHASE-FIELD CONCURRENT MULTISCALE METHOD FOR EFFICIENT SIMULATION OF QUASI-BRITTLE FRACTURE
    Ren, Bangke
    Zhu, Hehua
    INTERNATIONAL JOURNAL FOR MULTISCALE COMPUTATIONAL ENGINEERING, 2023, 21 (04) : 67 - 89