A parameter-free graph reduction for spectral clustering and SpectralNet

被引:4
|
作者
Alshammari, Mashaan [1 ]
Stavrakakis, John [2 ]
Takatsuka, Masahiro [2 ]
机构
[1] Univ Hail, Coll Comp Sci & Engn, Hail 81411, Saudi Arabia
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW 2006, Australia
关键词
Spectral clustering; SpectralNet; Graph reduction; Local scale similarity; SPARSIFICATION;
D O I
10.1016/j.array.2022.100192
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Graph-based clustering methods like spectral clustering and SpectralNet are very efficient in detecting clusters of non-convex shapes. Unlike the popular k-means, graph-based clustering methods do not assume that each cluster has a single mean. However, these methods need a graph where vertices in the same cluster are connected by edges of large weights. To achieve this goal, many studies have proposed graph reduction methods with parameters. Unfortunately, these parameters have to be tuned for every dataset. We introduce a graph reduction method that does not require any parameters. First, the distances from every point p to its neighbors are filtered using an adaptive threshold to only keep neighbors with similar surrounding density. Second, the similarities with close neighbors are computed and only high similarities are kept. The edges that survive these two filtering steps form the constructed graph that was passed to spectral clustering and SpectralNet. The experiments showed that our method provides a stable alternative, where other methods' performance fluctuated according to the setting of their parameters.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Multi-kernel graph fusion for spectral clustering
    Zhou, Bo
    Liu, Wenliang
    Zhang, Wenzhen
    Lu, Zhengyu
    Tan, Qianlin
    INFORMATION PROCESSING & MANAGEMENT, 2022, 59 (05)
  • [22] Structured graph optimization for joint spectral embedding and clustering
    Yang, Xiaojun
    Li, Siyuan
    Liang, Ke
    Nie, Feiping
    Lin, Liang
    NEUROCOMPUTING, 2022, 503 : 62 - 72
  • [23] Anchor graph-based multiview spectral clustering
    Lei, Yu
    Niu, Zuoyuan
    Wang, Qianqian
    Gao, Quanxue
    Yang, Ming
    NEUROCOMPUTING, 2024, 583
  • [24] Consistent graph learning for multi-view spectral clustering
    Xie, Deyan
    Gao, Quanxue
    Zhao, Yougang
    Yang, Fan
    Song, Wei
    PATTERN RECOGNITION, 2024, 154
  • [25] Stacked Network to Realize Spectral Clustering With Adaptive Graph Learning
    Li, Junyu
    Qi, Fei
    Yuan, Haoliang
    Zhong, Cheng
    Cai, Hongmin
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 3501 - 3513
  • [26] ACCELERATED SPECTRAL CLUSTERING USING GRAPH FILTERING OF RANDOM SIGNALS
    Tremblay, Nicolas
    Puy, Gilles
    Borgnat, Pierre
    Gribonval, Remi
    Vandergheynst, Pierre
    2016 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING PROCEEDINGS, 2016, : 4094 - 4098
  • [27] On defining affinity graph for spectral clustering through ranking on manifolds
    Xia, Tian
    Cao, Juan
    Zhang, Yong-dong
    Li, Jin-tao
    NEUROCOMPUTING, 2009, 72 (13-15) : 3203 - 3211
  • [28] Spectral Clustering Based on k-Nearest Neighbor Graph
    Lucinska, Malgorzata
    Wierzchon, Lawomir T.
    COMPUTER INFORMATION SYSTEMS AND INDUSTRIAL MANAGEMENT (CISIM), 2012, 7564 : 254 - 265
  • [29] Automatic graph pruning based on kernel alignment for spectral clustering
    Alvarez-Meza, A. M.
    Castro-Ospina, A. E.
    Castellanos-Dominguez, G.
    PATTERN RECOGNITION LETTERS, 2016, 70 : 8 - 16
  • [30] Multi-view Spectral Clustering Based on Graph Learning
    Song, Jinmei
    Liu, Baokai
    Zhang, Kaiwu
    Yu, Yao
    Du, Shiqiang
    2022 41ST CHINESE CONTROL CONFERENCE (CCC), 2022, : 6527 - 6532