Geometric Phase in a Generalized Time-Dependent Double-Boson Interaction Model

被引:0
|
作者
Wang, An-Ling [2 ]
Liu, Fu-Ping [2 ]
Yu, Zhao-Xian [1 ]
Jiao, Zhi-Yong [3 ]
机构
[1] Beijing Informat Sci & Technol Univ, Dept Phys, Beijing 100192, Peoples R China
[2] Beijing Inst Graph Commun, Dept Phys, Beijing 102600, Peoples R China
[3] China Univ Petr E China, Dept Phys, Dongying 257061, Peoples R China
关键词
Geometric phase; Time-dependent double-Boson interaction model; Invariant theory; QUANTUM-INVARIANT THEORY; ADIABATIC APPROXIMATION; BERRYS PHASE; FIELD; EVOLUTION;
D O I
10.1007/s10773-009-0089-8
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
By using of the invariant theory and the large quantum numbers approximation, we have studied a generalized time-dependent double-Boson interaction model, the dynamical and geometric phases are given, respectively. The Aharonov-Anandan phase is also obtained under the cyclical evolution.
引用
收藏
页码:2956 / 2960
页数:5
相关论文
共 50 条
  • [21] Geometric Phase of Time-Dependent Superconducting Qubit
    G. R. Zeng
    Yanyan Jiang
    Z. Q. Chen
    Yanxia Yu
    International Journal of Theoretical Physics, 2015, 54 : 1617 - 1626
  • [22] Geometric Phase of Time-Dependent Superconducting Qubit
    Zeng, G. R.
    Jiang, Yanyan
    Chen, Z. Q.
    Yu, Yanxia
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2015, 54 (05) : 1617 - 1626
  • [23] Geometric Phase in a Time-Dependent System with Higgs Algebra Structure
    Zhao-Xian Yu
    Zhi-Yong Jiao
    Xiang-Gui Li
    International Journal of Theoretical Physics, 2009, 48 : 2916 - 2919
  • [24] Geometric Phase in a Time-Dependent A-Type Jaynes-Cummings Model
    QIN Xian-Ming
    Communications in Theoretical Physics, 2009, 51 (03) : 407 - 410
  • [25] Geometric Phase in a Time-Dependent k-Photon Λ-Type Jaynes–Cummings Model
    Zhao-Xian Yu
    Bing-Hao Xie
    Shuo Jin
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2008, 47 : 2690 - 2696
  • [26] Geometric Phase in the Interaction System of Two-Energy Atom with Double-Mode Radiation Field
    Liu, Fu-Ping
    Wang, An-Ling
    Yu, Zhao-Xian
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2010, 49 (03) : 536 - 541
  • [27] Fitness in time-dependent environments includes a geometric phase contribution
    Tanase-Nicola, Sorin
    Nemenman, Ilya
    JOURNAL OF THE ROYAL SOCIETY INTERFACE, 2012, 9 (71) : 1354 - 1362
  • [28] Geometric Phase in a Time-Dependent Bose-Fermi System
    Zhao-Xian Yu
    Zhi-Yong Jiao
    International Journal of Theoretical Physics, 2010, 49 : 526 - 530
  • [29] Propagator and geometric phase of a general time-dependent harmonic oscillator
    Gweon, JH
    Choi, JR
    JOURNAL OF THE KOREAN PHYSICAL SOCIETY, 2003, 42 (03) : 325 - 330
  • [30] Geometric Phase in a Time-Dependent System with Laguerre Polynomial State
    An-Ling Wang
    Fu-Ping Liu
    Zhao-Xian Yu
    International Journal of Theoretical Physics, 2010, 49 : 531 - 535