An integrated network analysis reveals that nitric oxide reductase prevents metabolic cycling of nitric oxide by Pseudomonas aeruginosa

被引:17
|
作者
Robinson, Jonathan L. [1 ,4 ]
Jaslove, Jacob M. [2 ,3 ]
Murawski, Allison M. [2 ,3 ]
Fazen, Christopher H. [1 ,5 ]
Brynildsen, Mark P. [1 ,2 ]
机构
[1] Princeton Univ, Dept Chem & Biol Engn, Princeton, NJ 08544 USA
[2] Princeton Univ, Dept Mol Biol, Princeton, NJ 08544 USA
[3] Rutgers Robert Wood Johnson Med Sch, Piscataway, NJ 08854 USA
[4] Chalmers Univ Technol, Dept Biol & Biol Engn, SE-41296 Gothenburg, Sweden
[5] Coll New Jersey, Dept Chem, Ewing, NJ 08628 USA
基金
美国国家科学基金会;
关键词
Metabolic cycle; Kinetic model; Oscillations; NO reductase; Fhp; Denitrification; CYSTIC-FIBROSIS; NITRATE REDUCTASE; ESCHERICHIA-COLI; TRANSCRIPTIONAL REGULATION; ANTIBIOTIC-RESISTANCE; BACTERIAL HEMOGLOBINS; NITROSATIVE STRESS; BIOFILM FORMATION; ANAEROBIC GROWTH; MODEL SELECTION;
D O I
10.1016/j.ymben.2017.03.006
中图分类号
Q81 [生物工程学(生物技术)]; Q93 [微生物学];
学科分类号
071005 ; 0836 ; 090102 ; 100705 ;
摘要
Nitric oxide (NO) is a chemical weapon within the arsenal of immune cells, but is also generated endogenously by different bacteria. Pseudomonas aeruginosa are pathogens that contain an NO-generating nitrite (NO2 ) reductase (NirS), and NO has been shown to influence their virulence. Interestingly, P. aeruginosa also contain NO dioxygenase (Fhp) and nitrate (NO3 (-)) reductases, which together with NirS provide the potential for NO to be metabolically cycled (NO -> NO3 (-)-> NO2 (-)-> NO). Deeper understanding of NO metabolism in P. aeruginosa will increase knowledge of its pathogenesis, and computational models have proven to be useful tools for the quantitative dissection of NO biochemical networks. Here we developed such a model for P. aeruginosa and confirmed its predictive accuracy with measurements of NO, O-2, NO2 (-), and NO3 (-) in mutant cultures devoid of Fhp or NorCB (NO reductase) activity. Using the model, we assessed whether NO was metabolically cycled in aerobic P. aeruginosa cultures. Calculated fluxes indicated a bottleneck at NO3 (-), which was relieved upon O-2 depletion. As cell growth depleted dissolved O-2 levels, NO3 (-) was converted to NO2 (-) at near-stoichiometric levels, whereas NO2 (-) consumption did not coincide with NO or NO3 (-) accumulation. Assimilatory NO2 reductase (NirBD) or NorCB activity could have prevented NO cycling, and experiments with Delta nirB,Delta nirS, and Delta norC showed that NorCB was responsible for loss of flux from the cycle. Collectively, this work provides a computational tool to analyze NO metabolism in P. aeruginosa, and establishes that P. aeruginosa use NorCB to prevent metabolic cycling of NO.
引用
收藏
页码:67 / 81
页数:15
相关论文
共 50 条
  • [1] NITRIC OXIDE REDUCTASE FROM PSEUDOMONAS AERUGINOSA
    FEWSON, CA
    NICHOLAS, DJ
    BIOCHEMICAL JOURNAL, 1961, 78 (01) : P09 - +
  • [2] The structural genes for nitric oxide reductase from Pseudomonas aeruginosa
    Arai, H.
    Igarashi, Y.
    Kodama, T.
    B B A - Biomembranes, 1261 (02):
  • [3] THE STRUCTURAL GENES FOR NITRIC-OXIDE REDUCTASE FROM PSEUDOMONAS-AERUGINOSA
    ARAI, H
    IGARASHI, Y
    KODAMA, T
    BIOCHIMICA ET BIOPHYSICA ACTA-GENE STRUCTURE AND EXPRESSION, 1995, 1261 (02): : 279 - 284
  • [4] Nitric oxide reductase from pseudomonas nautica
    不详
    EUROPEAN BIOPHYSICS JOURNAL WITH BIOPHYSICS LETTERS, 2005, 34 (06): : 663 - 663
  • [5] Direct detection of blood nitric oxide reveals a burn-dependent decrease of nitric oxide in response to Pseudomonas aeruginosa infection
    Dunn, Julia L. M.
    Hunter, Rebecca A.
    Gast, Karli
    Maile, Robert
    Cairns, Bruce A.
    Schoenfisch, Mark H.
    BURNS, 2016, 42 (07) : 1522 - 1527
  • [6] Participation of nitric oxide reductase in survival of Pseudomonas aeruginosa in LPS-activated macrophages
    Kakishima, Kohei
    Shiratsuchi, Akiko
    Taoka, Azuma
    Nakanishi, Yoshinobu
    Fukumori, Yoshihiro
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2007, 355 (02) : 587 - 591
  • [7] Pseudomonas aeruginosa overexpression system of nitric oxide reductase for in vivo and in vitro mutational analyses
    Yamagiwa, Raika
    Kurahashi, Takuya
    Takeda, Mariko
    Adachi, Mayuho
    Nakamura, Hiro
    Arai, Hiroyuki
    Shiro, Yoshitsugu
    Sawai, Hitomi
    Tosha, Takehiko
    BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2018, 1859 (05): : 333 - 341
  • [8] Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa
    Barraud, Nicolas
    Hassett, Daniel J.
    Hwang, Sung-Hei
    Rice, Scott A.
    Kjelleberg, Staffan
    Webb, Jeremy S.
    JOURNAL OF BACTERIOLOGY, 2006, 188 (21) : 7344 - 7353
  • [9] Origin and Impact of Nitric Oxide in Pseudomonas aeruginosa Biofilms
    Cutruzzola, Francesca
    Frankenberg-Dinkel, Nicole
    JOURNAL OF BACTERIOLOGY, 2016, 198 (01) : 55 - 65
  • [10] Pseudomonas Aeruginosa Utilizes a Nitric Oxide Metabolic Pathway to Evade Killing by Neutrophils in the Lung
    Nakatsuka, Y.
    Matsumoto, M.
    Inohara, N.
    Nunez, G.
    AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2023, 207