A monolithic mixed finite element method for a fluid-structure interaction problem

被引:4
作者
Bean, Maranda [1 ]
Yi, Son-Young [2 ]
机构
[1] Univ Texas El Paso, Computat Sci Program, El Paso, TX 79968 USA
[2] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
基金
美国国家科学基金会;
关键词
Fluid-structure interaction; Mixed finite element method; Hellinger-Reissner principle; LINEAR ELASTICITY; FEM;
D O I
10.1016/j.amc.2019.124615
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a numerical method for modeling the interaction of a Stokes fluid and a linear elastic solid. The model problem is expressed in the stress-displacement formulation for the linear elastodynamics in the solid region and the stress-velocity formulation for the Stokes equations in the fluid region. These two systems are coupled in such a way that the interface conditions are imposed naturally in the resulting weak formulation, which is based on the Hellinger-Reissner variational principle. For the time discretization, we use a three-level scheme for each time step, with an exception at the first time step. We provide a priori error analysis for fully-discrete, nonconforming mixed finite element methods and show some numerical results to confirm our theoretical results. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页数:17
相关论文
共 28 条
[1]   Rectangular mixed finite elements for elasticity [J].
Arnold, DN ;
Awanou, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (09) :1417-1429
[2]   Nonconforming mixed elements for elasticity [J].
Arnold, DN ;
Winther, R .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2003, 13 (03) :295-307
[3]   Mixed finite elements for elasticity [J].
Arnold, DN ;
Winther, R .
NUMERISCHE MATHEMATIK, 2002, 92 (03) :401-419
[4]   Convergence analysis of a projection semi-implicit coupling scheme for fluid-structure interaction problems [J].
Astorino, M. ;
Grandmont, C. .
NUMERISCHE MATHEMATIK, 2010, 116 (04) :721-767
[5]  
Baffico L., J. Appl. Math and Mech, V95, P831
[6]  
Benzi M, 2005, ACTA NUMER, V14, P1, DOI 10.1017/S0962492904000212
[7]  
Brezzi F., 2012, Mixed and Hybrid Finite Element Methods
[8]  
Bungartz H.J, 2006, FLUID STRUCTURE INTE, V53
[9]  
Byfut A., 2008, FFW DOCUMENTATION
[10]   The Arnold-Winther mixed FEM in linear elasticity.: Part I:: Implementation and numerical verification [J].
Carstensen, C. ;
Guenther, D. ;
Reininghaus, J. ;
Thiele, J. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2008, 197 (33-40) :3014-3023