Prediction error methods for limit cycle data

被引:4
作者
Casas, RA
Bitmead, RR
Jacobson, CA
Johnson, CR
机构
[1] NxtWave Commun, Langhorne, PA 19047 USA
[2] Univ Calif San Diego, Dept Mech & Aerosp Engn, La Jolla, CA 92093 USA
[3] United Technol Res Ctr, E Hartford, CT 06108 USA
[4] Cornell Univ, Sch Elect Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
closed-loop identification; limit cycle; prediction error methods;
D O I
10.1016/S0005-1098(02)00085-7
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Prediction error methods are considered for identification of the forward linear dynamics of nonlinear feedback closed-loop systems which operate in a perturbed stable limit cycle. A model of the signals measured in a neighborhood of the limit cycle is presented and shown to satisfy a quasistationarity property. Quasistationarity is then used to prove that prediction error methods are both convergent and consistent for our data model. (C) 2002 Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1753 / 1760
页数:8
相关论文
共 13 条
[1]  
Astrom K., 1997, COMPUTER CONTROLLED
[2]   Effects of noise on the phase dynamics of nonlinear oscillators [J].
Daffertshofer, A .
PHYSICAL REVIEW E, 1998, 58 (01) :327-338
[3]  
FORSELL U, 1999, THESIS LINKOPING STU
[4]   IDENTIFICATION OF PROCESSES IN CLOSED-LOOP - IDENTIFIABILITY AND ACCURACY ASPECTS [J].
GUSTAVSSON, I ;
LJUNG, L ;
SODERSTROM, T .
AUTOMATICA, 1977, 13 (01) :59-75
[5]  
Knobloch E., 1989, NOISE NONLINEAR DYNA, V2, P65
[6]   EFFECT OF NOISE AND PERTURBATIONS ON LIMIT-CYCLE SYSTEMS [J].
KURRER, C ;
SCHULTEN, K .
PHYSICA D-NONLINEAR PHENOMENA, 1991, 50 (03) :311-320
[7]  
LASCALA BF, 1995, MATH CONTROL SIGNAL, V8, P1, DOI 10.1007/BF01212364
[8]  
LEONGARCIA A, 1989, PROBABILITY RANDOM P
[9]   CONVERGENCE ANALYSIS OF PARAMETRIC IDENTIFICATION METHODS [J].
LJUNG, L .
IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1978, 23 (05) :770-783
[10]  
Ljung L., 1999, SYSTEM IDENTIFICATIO