Robustness of Sample and Multiscale Entropy Estimators in Noisy and Incomplete Time Series

被引:0
作者
Perkey, Scott [1 ]
Krone-Martins, Alberto [2 ]
机构
[1] Univ Calif Irvine, Dept Phys Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Informat, Irvine, CA 92697 USA
来源
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON E-SCIENCE (ESCIENCE 2022) | 2022年
关键词
Astronomy; Entropy; Time Series;
D O I
10.1109/eScience55777.2022.00064
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we analyze and compare two entropy estimators applied to random walk time series. We compare the robustness of multi-scale entropy and sample entropy for different regimes of signal-to-noise ratio. We also compare multi-scale entropy and sample entropy in the case of missing data when simple linear interpolation is adopted to fill the missing data points. In the case of the signal-to-noise comparison, we show by numerical simulations and present strong mathematical arguments that multi-scale entropy is a more resistant estimator to analyze time series. We also show that multi-scale entropy provides a more resistant and accurate estimate of entropy on random walk time series in the scenario of missing data, especially when completing missing data with linear interpolation.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [41] LSTM Based Time Series Forecasting of Noisy Signals
    Getu, Beza Negash
    RECENT CHALLENGES IN INTELLIGENT INFORMATION AND DATABASE SYSTEMS, PT II, ACIIDS 2024, 2024, 2145 : 133 - 146
  • [42] Using extremal events to characterize noisy time series
    Berry, Eric
    Cummins, Bree
    Nerem, Robert R.
    Smith, Lauren M.
    Haase, Steven B.
    Gedeon, Tomas
    JOURNAL OF MATHEMATICAL BIOLOGY, 2020, 80 (05) : 1523 - 1557
  • [43] A note on the Gamma test analysis of noisy input/output data and noisy time series
    Jones, Antonia J.
    Evans, D.
    Kemp, S. E.
    PHYSICA D-NONLINEAR PHENOMENA, 2007, 229 (01) : 1 - 8
  • [44] Variational Embedding Multiscale Sample Entropy: A Tool for Complexity Analysis of Multichannel Systems
    Xiao, Hongjian
    Mandic, Danilo P.
    ENTROPY, 2022, 24 (01)
  • [45] Entropy and Multifractal-Multiscale Indices of Heart Rate Time Series to Evaluate Intricate Cognitive-Autonomic Interactions
    Bouny, Pierre
    Arsac, Laurent M.
    Cuq, Emma Toure
    Deschodt-Arsac, Veronique
    ENTROPY, 2021, 23 (06)
  • [46] Robustness of forecasting of autoregressive time series for additive distortions
    Zenevich D.V.
    Harin Yu.S.
    Journal of Mathematical Sciences, 2005, 127 (4) : 2066 - 2072
  • [47] Robustness of AutoML for Time Series Forecasting in Sensor Networks
    Halvari, Tuomas
    Nurminen, Jukka K.
    Mikkonen, Tommi
    2021 IFIP NETWORKING CONFERENCE AND WORKSHOPS (IFIP NETWORKING), 2021,
  • [48] Classification of Interbeat Interval Time-Series Using Attention Entropy
    Yang, Jiawei
    Choudhary, Gulraiz I.
    Rahardja, Susanto
    Franti, Pasi
    IEEE TRANSACTIONS ON AFFECTIVE COMPUTING, 2023, 14 (01) : 321 - 330
  • [49] A Method for Estimating the Entropy of Time Series Using Artificial Neural Networks
    Velichko, Andrei
    Heidari, Hanif
    ENTROPY, 2021, 23 (11)
  • [50] Wild multiplicative bootstrap for M and GMM estimators in time series
    Audrino, Francesco
    Camponovo, Lorenzo
    Roth, Constantin
    QUANTITATIVE FINANCE AND ECONOMICS, 2019, 3 (01): : 165 - 186