Robustness of Sample and Multiscale Entropy Estimators in Noisy and Incomplete Time Series

被引:0
作者
Perkey, Scott [1 ]
Krone-Martins, Alberto [2 ]
机构
[1] Univ Calif Irvine, Dept Phys Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Informat, Irvine, CA 92697 USA
来源
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON E-SCIENCE (ESCIENCE 2022) | 2022年
关键词
Astronomy; Entropy; Time Series;
D O I
10.1109/eScience55777.2022.00064
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we analyze and compare two entropy estimators applied to random walk time series. We compare the robustness of multi-scale entropy and sample entropy for different regimes of signal-to-noise ratio. We also compare multi-scale entropy and sample entropy in the case of missing data when simple linear interpolation is adopted to fill the missing data points. In the case of the signal-to-noise comparison, we show by numerical simulations and present strong mathematical arguments that multi-scale entropy is a more resistant estimator to analyze time series. We also show that multi-scale entropy provides a more resistant and accurate estimate of entropy on random walk time series in the scenario of missing data, especially when completing missing data with linear interpolation.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [31] Entropy of Financial Time Series Due to the Shock of War
    Drzazga-Szczesniak, Ewa A.
    Szczepanik, Piotr
    Kaczmarek, Adam Z.
    Szczesniak, Dominik
    ENTROPY, 2023, 25 (05)
  • [32] Alignment of Noisy and Uniformly Scaled Time Series
    Lipowsky, Constanze
    Dranischnikow, Egor
    Goettler, Herbert
    Gottron, Thomas
    Kemeter, Mathias
    Schoemer, Elmar
    DATABASE AND EXPERT SYSTEMS APPLICATIONS, PROCEEDINGS, 2009, 5690 : 675 - 688
  • [33] Sample entropy of electrocardiographic RR and QT time-series data during rest and exercise
    Lewis, M. J.
    Short, A. L.
    PHYSIOLOGICAL MEASUREMENT, 2007, 28 (06) : 731 - 744
  • [34] Multiscale Sample Entropy of Heart Rate and Blood Pressure: Methodological Aspects
    Castiglioni, Paolo
    Brambilla, Lorenzo
    Bini, Matteo
    Coruzzi, Paolo
    Faini, Andrea
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 3134 - 3137
  • [35] COMPARISON OF THE EFFICIENCY FOR MEAN ESTIMATORS IN TIME-SERIES
    LASSER, R
    NIESSNER, M
    ZOCK, H
    COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 1994, 23 (01) : 129 - 141
  • [36] Acceleration of time series entropy algorithms
    Tomcala, Jiri
    JOURNAL OF SUPERCOMPUTING, 2019, 75 (03) : 1443 - 1454
  • [37] THE CALCULATION OF ENTROPY OF FINANCIAL TIME SERIES
    Dostal, Petr
    Kratochvil, Oldrich
    NINTH INTERNATIONAL CONFERENCE ON SOFT COMPUTING APPLIED IN COMPUTER AND ECONOMIC ENVIRONMENTS, ICSC 2011, 2011, : 121 - 124
  • [38] Acceleration of time series entropy algorithms
    Jiří Tomčala
    The Journal of Supercomputing, 2019, 75 : 1443 - 1454
  • [39] On the sample variogram and the sample autocovariance for nonstationary time series
    Haslett, J
    JOURNAL OF THE ROYAL STATISTICAL SOCIETY SERIES D-THE STATISTICIAN, 1997, 46 (04) : 475 - 485
  • [40] Using extremal events to characterize noisy time series
    Eric Berry
    Bree Cummins
    Robert R. Nerem
    Lauren M. Smith
    Steven B. Haase
    Tomas Gedeon
    Journal of Mathematical Biology, 2020, 80 : 1523 - 1557