Robustness of Sample and Multiscale Entropy Estimators in Noisy and Incomplete Time Series

被引:0
作者
Perkey, Scott [1 ]
Krone-Martins, Alberto [2 ]
机构
[1] Univ Calif Irvine, Dept Phys Sci, Irvine, CA 92697 USA
[2] Univ Calif Irvine, Dept Informat, Irvine, CA 92697 USA
来源
2022 IEEE 18TH INTERNATIONAL CONFERENCE ON E-SCIENCE (ESCIENCE 2022) | 2022年
关键词
Astronomy; Entropy; Time Series;
D O I
10.1109/eScience55777.2022.00064
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
In this work, we analyze and compare two entropy estimators applied to random walk time series. We compare the robustness of multi-scale entropy and sample entropy for different regimes of signal-to-noise ratio. We also compare multi-scale entropy and sample entropy in the case of missing data when simple linear interpolation is adopted to fill the missing data points. In the case of the signal-to-noise comparison, we show by numerical simulations and present strong mathematical arguments that multi-scale entropy is a more resistant estimator to analyze time series. We also show that multi-scale entropy provides a more resistant and accurate estimate of entropy on random walk time series in the scenario of missing data, especially when completing missing data with linear interpolation.
引用
收藏
页码:413 / 414
页数:2
相关论文
共 50 条
  • [21] Cross-sample entropy estimation for time series analysis: a nonparametric approach
    Ramirez-Parietti, Ignacio
    Contreras-Reyes, Javier E.
    Idrovo-Aguirre, Byron J.
    NONLINEAR DYNAMICS, 2021, 105 (03) : 2485 - 2508
  • [22] Orthogonal Samples for Estimators in Time Series
    Rao, Suhasini Subba
    JOURNAL OF TIME SERIES ANALYSIS, 2018, 39 (03) : 313 - 337
  • [23] Fatigue condition diagnosis of rolling bearing based on normalized balanced multiscale sample entropy
    Tan, Hongchuang
    Xie, Suchao
    Liu, Runda
    Cheng, Jiaqi
    Jing, Kunkun
    INTERNATIONAL JOURNAL OF FATIGUE, 2023, 172
  • [24] BBS Posts Time Series Analysis based on Sample Entropy and Deep Neural Networks
    Chen, Jindong
    Du, Yuxuan
    Liu, Linlin
    Zhang, Pinyi
    Zhang, Wen
    ENTROPY, 2019, 21 (01)
  • [25] Robustness analysis in forecasting of time series
    Kharin, Y
    DEVELOPMENTS IN ROBUST STATISTICS, 2003, : 180 - 193
  • [26] Measuring time series regularity using nonlinear similarity-based sample entropy
    Xie, Hong-Bo
    He, Wei-Xing
    Liu, Hui
    PHYSICS LETTERS A, 2008, 372 (48) : 7140 - 7146
  • [27] MULTISCALE ANALYSIS OF COMPLEX TIME SERIES
    Gao J.
    Lixue Xuebao/Chinese Journal of Theoretical and Applied Mechanics, 2022, 54 (08): : 2318 - 2331
  • [28] Entropy of electromyography time series
    Kaufman, Miron
    Zurcher, Ulrich
    Sung, Paul S.
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 386 (02) : 698 - 707
  • [29] Detecting and Classifying Events in Noisy Time Series
    Kang, Yanfei
    Belusic, Danijel
    Smith-Miles, Kate
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 2014, 71 (03) : 1090 - 1104
  • [30] Entropy testing for nonlinear serial dependence in time series
    Giannerini, Simone
    Maasoumi, Esfandiar
    Dagum, Estela Bee
    BIOMETRIKA, 2015, 102 (03) : 661 - 675