Solitons, Backlund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation

被引:35
作者
Lan, Zhong-Zhou [1 ,2 ]
Gao, Yi-Tian [1 ,2 ]
Yang, Jin-Wei [1 ,2 ]
Su, Chuan-Qi [1 ,2 ]
Zuo, Da-Wei [1 ,2 ,3 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 01期
基金
中国国家自然科学基金;
关键词
Backlund Transformation; Bell Polynomials; (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation; Infinitely Many Conservation Law; Soliton Solutions; SYMBOLIC COMPUTATION; OPTICAL-FIBER; COLLISIONS; SYSTEM;
D O I
10.1515/zna-2015-0440
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Under investigation in this article is a (2+1)-dimensional generalised variable-coefficient shallow water wave equation, which describes the interaction of the Riemann wave propagating along the y axis with a long-wave propagating along the x axis in a fluid, where x and y are the scaled space coordinates. Bilinear forms, Backlund transformation, Lax pair, and infinitely many conservation law are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the multi-soliton interaction in the scaled space and time coordinates. (ii) Positions of the solitons depend on the sign of wave numbers after each interaction. (iii) Interaction of the solitons is elastic, i.e. the amplitude, velocity, and shape of each soliton remain invariant after each interaction except for a phase shift.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [41] Solitonic interaction of a variable-coefficient (2+1)-dimensional generalized breaking soliton equation
    Qin, Yi
    Gao, Yi-Tian
    Shen, Yu-Jia
    Sun, Yu-Hao
    Meng, Gao-Qing
    Yu, Xin
    PHYSICA SCRIPTA, 2013, 88 (04)
  • [42] Lax pair, Backlund transformation and N-soliton-like solution for a variable-coefficient Gardner equation from nonlinear lattice, plasma physics and ocean dynamics with symbolic computation
    Li, Juan
    Xu, Tao
    Meng, Xiang-Hua
    Zhang, Ya-Xing
    Zhang, Hai-Qiang
    Tian, Bo
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 336 (02) : 1443 - 1455
  • [43] LUMP SOLUTIONS TO THE (2+1)-DIMENSIONAL SHALLOW WATER WAVE EQUATION
    Ma, Hong-Cai
    Ni, Ke
    Deng, Aiping
    THERMAL SCIENCE, 2017, 21 (04): : 1765 - 1769
  • [44] Water-wave studies on a (2+1)-dimensional generalized variable-coefficient Boiti-Leon-Pempinelli system
    Gao, Xiao-Tian
    Tian, Bo
    APPLIED MATHEMATICS LETTERS, 2022, 128
  • [45] Conservation laws, solitons, breather and rogue waves for the (2+1)-dimensional variable-coefficient Nizhnik-Novikov-Veselov system in an inhomogeneous medium
    Yu, Ming-Xiao
    Tian, Bo
    Yuan, Yu-Qiang
    Sun, Yan
    Du, Xia-Xia
    CHINESE JOURNAL OF PHYSICS, 2018, 56 (02) : 645 - 658
  • [46] Characteristics of lump solutions to a (3+1)-dimensional variable-coefficient generalized shallow water wave equation in oceanography and atmospheric science
    Liu, Jian-Guo
    Zhu, Wen-Hui
    He, Yan
    Lei, Zhi-Qiang
    EUROPEAN PHYSICAL JOURNAL PLUS, 2019, 134 (08)
  • [47] Some Interaction Solutions of a Reduced Generalised (3+1)-Dimensional Shallow Water Wave Equation for Lump Solutions and a Pair of Resonance Solitons
    Wang, Yao
    Chen, Mei-Dan
    Li, Xian
    Li, Biao
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2017, 72 (05): : 419 - 424
  • [48] Wronskian, Pfaffian and periodic wave solutions for a (2+1)-dimensional extended shallow water wave equation
    Huang, Qian-Min
    Gao, Yi-Tian
    NONLINEAR DYNAMICS, 2017, 89 (04) : 2855 - 2866
  • [49] Kadomtsev-Petviashvili hierarchy reduction, soliton and semi-rational solutions for the (3+1)-dimensional generalized variable-coefficient shallow water wave equation in a fluid
    Zhao, Xin
    Tian, Bo
    Qu, Qi-Xing
    Li, He
    Zhao, Xue-Hui
    Zhang, Chen-Rong
    Chen, Su-Su
    INTERNATIONAL JOURNAL OF COMPUTER MATHEMATICS, 2022, 99 (03) : 407 - 425
  • [50] Exact solutions of a (2+1)-dimensional extended shallow water wave equation
    Yuan, Feng
    He, Jing-Song
    Cheng, Yi
    CHINESE PHYSICS B, 2019, 28 (10)