Solitons, Backlund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation

被引:35
作者
Lan, Zhong-Zhou [1 ,2 ]
Gao, Yi-Tian [1 ,2 ]
Yang, Jin-Wei [1 ,2 ]
Su, Chuan-Qi [1 ,2 ]
Zuo, Da-Wei [1 ,2 ,3 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 01期
基金
中国国家自然科学基金;
关键词
Backlund Transformation; Bell Polynomials; (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation; Infinitely Many Conservation Law; Soliton Solutions; SYMBOLIC COMPUTATION; OPTICAL-FIBER; COLLISIONS; SYSTEM;
D O I
10.1515/zna-2015-0440
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Under investigation in this article is a (2+1)-dimensional generalised variable-coefficient shallow water wave equation, which describes the interaction of the Riemann wave propagating along the y axis with a long-wave propagating along the x axis in a fluid, where x and y are the scaled space coordinates. Bilinear forms, Backlund transformation, Lax pair, and infinitely many conservation law are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the multi-soliton interaction in the scaled space and time coordinates. (ii) Positions of the solitons depend on the sign of wave numbers after each interaction. (iii) Interaction of the solitons is elastic, i.e. the amplitude, velocity, and shape of each soliton remain invariant after each interaction except for a phase shift.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [31] Explicit solutions of the (2+1)-dimensional AKNS shallow water wave equation with variable coefficients
    Lue Hailing
    Liu Xiqiang
    Liu Na
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (04) : 1287 - 1293
  • [32] Lax pair and lump solutions for the (2+1)-dimensional DJKM equation associated with bilinear Backlund transformations
    Cheng, Li
    Zhang, Yi
    Lin, Mei-Juan
    ANALYSIS AND MATHEMATICAL PHYSICS, 2019, 9 (04) : 1741 - 1752
  • [33] Integrability and Exact Solutions for a (2+1)-dimensional Variable-Coefficient KdV Equation
    Zhang Yu
    Xu Gui-Qiong
    APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2014, 9 (02): : 646 - 658
  • [34] Comment on "Bilinear Backlund transformation, soliton and periodic wave solutions for a (3+1)-dimensional variable-coefficient generalized shallow water wave equation" (Nonlinear Dyn. 87, 2529, 2017)
    Gao, Xin-Yi
    Guo, Yong-Jiang
    Shan, Wen-Rui
    NONLINEAR DYNAMICS, 2021, 105 (04) : 3849 - 3858
  • [35] Soliton Solutions, Bcklund Transformations and Lax Pair for a(3 + 1)-Dimensional Variable-Coefficient Kadomtsev–Petviashvili Equation in Fluids
    王云坡
    田播
    孙文荣
    甄慧玲
    江彦
    孙亚
    解西阳
    CommunicationsinTheoreticalPhysics, 2014, 61 (05) : 551 - 557
  • [36] Backlund transformation, infinite conservation laws and periodic wave solutions to a generalized (2+1)-dimensional Boussinesq equation
    Xu, Mei-Juan
    Tian, Shou-Fu
    Tu, Jian-Min
    Zhang, Tian-Tian
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2016, 31 : 388 - 408
  • [37] Painleve Analysis, Soliton Collision and Backlund Transformation for the (3+1)-Dimensional Variable-Coefficient Kadomtsev-Petviashvili Equation in Fluids or Plasmas
    Xie Xi-Yang
    Tian Bo
    Jiang Yan
    Zhong Hui
    Sun Ya
    Wang Yun-Po
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2014, 62 (01) : 26 - 32
  • [38] New solitons and breather-like solutions to a (2+1)-dimensional coupled variable-coefficient Schrödinger equation in optical fibers
    Wang, Xingye
    Gao, Ben
    NONLINEAR DYNAMICS, 2024, 112 (19) : 17321 - 17343
  • [39] N-soliton solutions, Backlund transformation and Lax pair for a generalized variable-coefficient fifth-order Korteweg-de Vries equation
    Yu, Xin
    Gao, Yi-Tian
    Sun, Zhi-Yuan
    Liu, Ying
    PHYSICA SCRIPTA, 2010, 81 (04)
  • [40] Painlevé Analysis, Bäcklund Transformation and Soliton Solutions of the (2+1)-dimensional Variable-coefficient Boussinesq Equation
    Zhang, Liang-Li
    Lu, Xing
    Zhu, Sheng-Zhi
    INTERNATIONAL JOURNAL OF THEORETICAL PHYSICS, 2024, 63 (07)