Solitons, Backlund Transformation, Lax Pair, and Infinitely Many Conservation Law for a (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation

被引:35
作者
Lan, Zhong-Zhou [1 ,2 ]
Gao, Yi-Tian [1 ,2 ]
Yang, Jin-Wei [1 ,2 ]
Su, Chuan-Qi [1 ,2 ]
Zuo, Da-Wei [1 ,2 ,3 ]
机构
[1] Beijing Univ Aeronaut & Astronaut, Minist Educ, Key Lab Fluid Mech, Beijing 100191, Peoples R China
[2] Beijing Univ Aeronaut & Astronaut, Natl Lab Computat Fluid Dynam, Beijing 100191, Peoples R China
[3] Shijiazhuang Tiedao Univ, Dept Math & Phys, Shijiazhuang 050043, Peoples R China
来源
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES | 2016年 / 71卷 / 01期
基金
中国国家自然科学基金;
关键词
Backlund Transformation; Bell Polynomials; (2+1)-Dimensional Generalised Variable-Coefficient Shallow Water Wave Equation; Infinitely Many Conservation Law; Soliton Solutions; SYMBOLIC COMPUTATION; OPTICAL-FIBER; COLLISIONS; SYSTEM;
D O I
10.1515/zna-2015-0440
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Under investigation in this article is a (2+1)-dimensional generalised variable-coefficient shallow water wave equation, which describes the interaction of the Riemann wave propagating along the y axis with a long-wave propagating along the x axis in a fluid, where x and y are the scaled space coordinates. Bilinear forms, Backlund transformation, Lax pair, and infinitely many conservation law are derived based on the binary Bell polynomials. Multi-soliton solutions are constructed via the Hirota method. Propagation and interaction of the solitons are illustrated graphically: (i) variable coefficients affect the shape of the multi-soliton interaction in the scaled space and time coordinates. (ii) Positions of the solitons depend on the sign of wave numbers after each interaction. (iii) Interaction of the solitons is elastic, i.e. the amplitude, velocity, and shape of each soliton remain invariant after each interaction except for a phase shift.
引用
收藏
页码:69 / 79
页数:11
相关论文
共 50 条
  • [21] Bilinear form, bilinear Backlund transformation and dynamic features of the soliton solutions for a variable-coefficient (3+1)-dimensional generalized shallow water wave equation
    Huang, Qian-Min
    Gao, Yi-Tian
    MODERN PHYSICS LETTERS B, 2017, 31 (22):
  • [22] Soliton Solutions, Backlund Transformation and Wronskian Solutions for the (2+1)-Dimensional Variable-Coefficient Konopelchenko-Dubrovsky Equations in Fluid Mechanics
    Xu, Peng-Bo
    Gao, Yi-Tian
    Wang, Lei
    Meng, De-Xin
    Gai, Xiao-Ling
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2012, 67 (3-4): : 132 - 140
  • [23] Solitons interaction and integrability for a (2+1)-dimensional variable-coefficient Broer Kaup system in water waves
    Zhao, Xue-Hui
    Tian, Bo
    Guo, Yong-Jiang
    Li, Hui-Min
    MODERN PHYSICS LETTERS B, 2018, 32 (08):
  • [24] Backlund Transformation and Soliton Solutions for a (3+1)-Dimensional Variable-Coefficient Breaking Soliton Equation
    Zhao, Chen
    Gao, Yi-Tian
    Lan, Zhong-Zhou
    Yang, Jin-Wei
    ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2016, 71 (09): : 797 - 805
  • [25] The Riemann-Backlund method to a quasiperiodic wave solvable generalized variable coefficient (2+1)-dimensional KdV equation
    Zhao, Zhonglong
    Han, Bo
    NONLINEAR DYNAMICS, 2017, 87 (04) : 2661 - 2676
  • [26] Bright and dark solitons for a variable-coefficient (2+1) dimensional Heisenberg ferromagnetic spin chain equation
    Huang, Qian-Min
    Gao, Yi-Tian
    Jia, Shu-Liang
    OPTICAL AND QUANTUM ELECTRONICS, 2018, 50 (04)
  • [27] Dark solitons and Backlund transformation for the (2+1)-dimensional coupled nonlinear Schrodinger equation with the variable coefficients in a graded-index waveguide
    Wu, Xiao-Yu
    Tian, Bo
    Xie, Xi-Yang
    Chai, Jun
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 101 : 117 - 126
  • [28] The Painleve property, Backlund transformation, Lax pair and new analytic solutions of a generalized variable-coefficient KdV equation from fluids and plasmas
    Zhang Yuping
    Wang Junyi
    Wei Guangmei
    Liu Ruiping
    PHYSICA SCRIPTA, 2015, 90 (06)
  • [29] Bäcklund Transformation, Lax Pair and Solitons of the (2+1)-dimensional Davey-Stewartson-like Equations with Variable Coefficients for the Electrostatic Wave Packets
    Hui-Ping Zhou
    Bo Tian
    Hui-Xia Mo
    Min Li
    Pan Wang
    Journal of Nonlinear Mathematical Physics, 2013, 20 : 94 - 105
  • [30] Lax Pair, Improved Γ-Riccati Backlund Transformation and Soliton-Like Solutions to Variable-Coefficient Higher-Order Nonlinear Schrodinger Equation in Optical Fibers
    Lu, Yinglin
    Wei, Guangmei
    Liu, Xin
    ACTA APPLICANDAE MATHEMATICAE, 2019, 164 (01) : 185 - 192