Direct 3D printing of decellularized matrix embedded composite polycaprolactone scaffolds for cartilage regeneration

被引:16
作者
Gruber, Stacey M. S. [1 ]
Murab, Sumit [2 ]
Ghosh, Paulomi [3 ]
Whitlock, Patrick W. [1 ,3 ,4 ]
Lin, Chia-Ying J. [1 ,4 ]
机构
[1] Univ Cincinnati, Coll Engn & Appl Sci, Dept Biomed Engn, Cincinnati, OH USA
[2] IIT Mandi, BioX Ctr, Sch Biosci & Bioengn, Mandi, Himachal Prades, India
[3] Cincinnati Childrens Hosp Med Ctr, Div Pediat Orthopaed Surg, Cincinnati, OH 45229 USA
[4] Univ Cincinnati, Coll Med, Dept Orthopaed Surg, Cincinnati, OH USA
来源
BIOMATERIALS ADVANCES | 2022年 / 140卷
关键词
3D printing; Decellularized matrix; Composite; Osteochondral injury; Tissue engineering; IN-VITRO CHONDROGENESIS; EXTRACELLULAR-MATRIX; ARTICULAR-CARTILAGE; TISSUE; BONE; REPAIR;
D O I
10.1016/j.bioadv.2022.213052
中图分类号
TB3 [工程材料学]; R318.08 [生物材料学];
学科分类号
0805 ; 080501 ; 080502 ;
摘要
Treatment options for large osteochondral injuries (OCIs) are limited by donor tissue scarcity, morbidity, and anatomic mismatch. 3D printing technology can produce patient-specific scaffolds to address these large defects. Thermoplastics like polycaprolactone (PCL) offer necessary mechanical properties, but lack bioactivity. We fabricated 3D printed PCL scaffolds embedded with polylactic acid microspheres containing decellularized cartilage matrix (DM). DM incorporation within polylactic acid microspheres prevented its thermal degradation during the 3D printing process. The scaffolds replicated the mechanical properties of native cartilage and demonstrated controlled release of DM proteins. Human mesenchymal stem cells (hMSCs) seeded on the com-posite scaffolds with DM and cultured in basal media self-assembled into aggregates mimicking mesenchymal condensates during embryonic development. The DM composite scaffolds also induced higher expression of biochemical markers of cartilage development than controls, providing evidence for their translational appli-cation in the treatment of OCIs. The present study demonstrates the potential of direct incorporation of DM with thermoplastics for 3D printing of patient-specific scaffolds for osteochondral regeneration.
引用
收藏
页数:14
相关论文
共 57 条
[1]   Development of a polyvinyl alcohol/sodium alginate hydrogel-based scaffold incorporating bFGF-encapsulated microspheres for accelerated wound healing [J].
Bahadoran, Maedeh ;
Shamloo, Amir ;
Nokoorani, Yeganeh Dorri .
SCIENTIFIC REPORTS, 2020, 10 (01)
[2]   A 3D printed PCL/hydrogel construct with zone-specific biochemical composition mimicking that of the meniscus [J].
Bahcecioglu, Gokhan ;
Hasirci, Nesrin ;
Bilgen, Bahar ;
Hasirci, Vasif .
BIOFABRICATION, 2019, 11 (02)
[3]   Matrix-induced autologous chondrocyte implantation versus microfracture in the treatment of cartilage defects of the knee: a 2-year randomised study [J].
Basad, Erhan ;
Ishaque, Bernd ;
Bachmann, Georg ;
Stuerz, Henning ;
Steinmeyer, Juergen .
KNEE SURGERY SPORTS TRAUMATOLOGY ARTHROSCOPY, 2010, 18 (04) :519-527
[4]   Extracellular matrix scaffolds for cartilage and bone regeneration [J].
Benders, Kim E. M. ;
van Weeren, P. Rene ;
Badylak, Stephen F. ;
Saris, Daniel B. F. ;
Dhert, Wouter J. A. ;
Malda, Jos .
TRENDS IN BIOTECHNOLOGY, 2013, 31 (03) :169-176
[5]   A Decellularized Porcine Xenograft-Derived Bone Scaffold for Clinical Use as a Bone Graft Substitute: A Critical Evaluation of Processing and Structure [J].
Bracey, Daniel N. ;
Seyler, Thorsten M. ;
Jinnah, Alexander H. ;
Lively, Mark O. ;
Willey, Jeffrey S. ;
Smith, Thomas L. ;
van Dyke, Mark E. ;
Whitlock, Patrick W. .
JOURNAL OF FUNCTIONAL BIOMATERIALS, 2018, 9 (03)
[6]  
Bruyas A, 2019, TISSUE ENG PT A, V25, P248, DOI [10.1089/ten.TEA.2018.0130, 10.1089/ten.tea.2018.0130]
[7]   Collagen grafted 3D polycaprolactone scaffolds for enhanced cartilage regeneration [J].
Cai, Yanli ;
Li, Jinlan ;
Poh, Chye Khoon ;
Tan, Hark Chuan ;
Thian, Eng San ;
Fuh, Jerry Ying Hsi ;
Sun, Jie ;
Tay, Bee Yen ;
Wang, Wilson .
JOURNAL OF MATERIALS CHEMISTRY B, 2013, 1 (43) :5971-5976
[8]   Scaffold design and in vitro study of osteochondral coculture in a three-dimensional porous polycaprolactone scaffold fabricated by fused deposition modeling [J].
Cao, T ;
Ho, KH ;
Teoh, SH .
TISSUE ENGINEERING, 2003, 9 :S103-S112
[9]   Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration [J].
Castilho, Miguel ;
Mouser, Vivian ;
Chen, Mike ;
Malda, Jos ;
Ito, Keita .
ACTA BIOMATERIALIA, 2019, 95 :297-306
[10]   Bio-ink properties and printability for extrusion printing living cells [J].
Chung, Johnson H. Y. ;
Naficy, Sina ;
Yue, Zhilian ;
Kapsa, Robert ;
Quigley, Anita ;
Moulton, Simon E. ;
Wallace, Gordon G. .
BIOMATERIALS SCIENCE, 2013, 1 (07) :763-773