Benford's Law for coefficients of newforms

被引:3
|
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 50 条
  • [32] Best Finite Approximations of Benford's Law
    Berger, Arno
    Xu, Chuang
    JOURNAL OF THEORETICAL PROBABILITY, 2019, 32 (03) : 1525 - 1553
  • [33] Numbers in the Internet Web and Benford's Law
    Jang, Dae-Heung
    KOREAN JOURNAL OF APPLIED STATISTICS, 2009, 22 (03) : 553 - 568
  • [34] APPLICATION OF BENFORD'S LAW IN FRAUD DETECTION
    Cabeza Garcia, Pedro Manuel
    REVISTA UNIVERSIDAD Y SOCIEDAD, 2019, 11 (05): : 421 - 427
  • [35] Benford's Law in Electric Power Engineering
    Hyseni, Ardian
    Medved, Dusan
    Petras, Jaroslav
    2024 24TH INTERNATIONAL SCIENTIFIC CONFERENCE ON ELECTRIC POWER ENGINEERING, EPE 2024, 2024, : 144 - 149
  • [36] Benford's Law in Electric Distribution Network
    Petras, Jaroslav
    Pavlik, Marek
    Zbojovsky, Jan
    Hyseni, Ardian
    Dudiak, Jozef
    MATHEMATICS, 2023, 11 (18)
  • [37] Best Finite Approximations of Benford’s Law
    Arno Berger
    Chuang Xu
    Journal of Theoretical Probability, 2019, 32 : 1525 - 1553
  • [38] Benford's Law as an Indicator of Fraud in Economics
    Toedter, Karl-Heinz
    GERMAN ECONOMIC REVIEW, 2009, 10 (03) : 339 - 351
  • [39] Benford's law and the limits of digit analysis
    Druica, Elena
    Oancea, Bogdan
    Valsan, Calin
    INTERNATIONAL JOURNAL OF ACCOUNTING INFORMATION SYSTEMS, 2018, 31 : 75 - 82
  • [40] Benford's law for exponential random variables
    Engel, HA
    Leuenberger, C
    STATISTICS & PROBABILITY LETTERS, 2003, 63 (04) : 361 - 365