Benford's Law for coefficients of newforms

被引:3
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 18 条
[11]  
Kontorovich A. V., 2006, ACTA ARITH, V74, P269
[12]   Benford's law for the 3α+1 function [J].
Lagarias, Jeffrey C. ;
Soundararajan, K. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2006, 74 :289-303
[13]  
Newcomb S., 1881, Am. J. Math, V4, P39, DOI [10.2307/2369148, DOI 10.2307/2369148]
[14]  
Ono Ken., 2004, CBMS Regional Conference Series in Mathematics, V102
[15]   1ST DIGIT PROBLEM [J].
RAIMI, RA .
AMERICAN MATHEMATICAL MONTHLY, 1976, 83 (07) :521-538
[16]  
Serre J.-P., 1973, GRADUATE TEXTS MATH
[17]  
Tenenbaum G., 1995, Cambridge Studies in Advanced Mathematics
[18]   INITIAL DIGITS FOR SEQUENCE OF PRIMES [J].
WHITNEY, RE .
AMERICAN MATHEMATICAL MONTHLY, 1972, 79 (02) :150-&