Benford's Law for coefficients of newforms

被引:3
作者
Jameson, Marie [1 ]
Thorner, Jesse [2 ]
Ye, Lynnelle [3 ]
机构
[1] Univ Tennessee, Dept Math, Knoxville, TN 37996 USA
[2] Emory Univ, Dept Math & Comp Sci, Atlanta, GA 30322 USA
[3] Harvard Univ, Dept Math, Cambridge, MA 02138 USA
关键词
Benford's Law; equidistribution mod 1; modular forms; Sato-Tate conjecture; DIGITS;
D O I
10.1142/S1793042116500299
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let f(z) = Sigma(infinity)(n=1) lambda(f) (n)e(2 pi inz) is an element of S-k(new) (Gamma(0)(N)) be a newform of even weight k >= 2 on Gamma(0)(N) without complex multiplication. Let P denote the set of all primes. We prove that the sequence {lambda(f) (p)}(p is an element of P) does not satisfy Benford's Law in any integer base b >= 2. However, given a base b >= 2 and a string of digits S in base b, the set A(lambda f) (b, S) := {p prime : the first digits of lambda(f) (p) in base b are given by S} has logarithmic density equal to log(b)(1 + S-1). Thus, {lambda(f) (p)}(p is an element of P) follows Benford's Law with respect to logarithmic density. Both results rely on the now-proven Sato-Tate Conjecture.
引用
收藏
页码:483 / 494
页数:12
相关论文
共 18 条
[1]   BENFORD'S LAW FOR COEFFICIENTS OF MODULAR FORMS AND PARTITION FUNCTIONS [J].
Anderson, Theresa C. ;
Rolen, Larry ;
Stoehr, Ruth .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2011, 139 (05) :1533-1541
[2]  
[Anonymous], 2006, An invitation to modern number theory
[3]   A Family of Calabi-Yau Varieties and Potential Automorphy II [J].
Barnet-Lamb, Tom ;
Geraghty, David ;
Harris, Michael ;
Taylor, Richard .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2011, 47 (01) :29-98
[4]  
Benford Frank, 1938, Proc. Am. Philos. Soc., P551, DOI DOI 10.2307/984802
[5]   One-dimensional dynamical systems and Benford's law [J].
Berger, A ;
Bunimovich, LA ;
Hill, TP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (01) :197-219
[6]   DISTRIBUTION OF LEADING DIGITS AND UNIFORM-DISTRIBUTION MOD-1 [J].
DIACONIS, P .
ANNALS OF PROBABILITY, 1977, 5 (01) :72-81
[7]  
Duncan R. L., 1969, J FIB Q, V7, P474
[8]  
HARDER G, 1999, FUNDAMENTAL PRINCIPL, V322
[9]   A statistical derivation of the significant-digit law [J].
Hill, TP .
STATISTICAL SCIENCE, 1995, 10 (04) :354-363
[10]   THE SIGNIFICANT-DIGIT PHENOMENON [J].
HILL, TP .
AMERICAN MATHEMATICAL MONTHLY, 1995, 102 (04) :322-327