Ultrathin Amorphous Ni(OH)2 Nanosheets on Ultrathin α-Fe2O3 Films for Improved Photoelectrochemical Water Oxidation

被引:64
作者
Liu, Qiong [1 ]
Cao, Fengren [1 ]
Wu, Fangli [1 ]
Lu, Hao [1 ]
Li, Liang [1 ]
机构
[1] Soochow Univ, Jiangsu Key Lab Thin Films, CECMP, Coll Phys Optoelect & Energy, Suzhou 215006, Peoples R China
来源
ADVANCED MATERIALS INTERFACES | 2016年 / 3卷 / 21期
基金
中国国家自然科学基金;
关键词
DOPED HEMATITE PHOTOANODE; CO-PI; PERFORMANCE; ARRAYS; NANOSTRUCTURES; HETEROJUNCTION; COCATALYST; EFFICIENT; NANOWIRE; PROGRESS;
D O I
10.1002/admi.201600256
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hematite (alpha-Fe2O3) is a promising photoanode material for photoelectrochemical (PEC) water splitting, however, its performance is largely limited by the short hole diffusion length that requires the thin active layer and efficient catalysts. In this work, ultrathin alpha-Fe2O3 films are fabricated using atomic layer deposition technology, and then ultrathin amorphous Ni(OH)(2) nanosheets are decorated on alpha-Fe2O3 films through a hydrothermal method. The microscopic morphology, phase, and composition are characterized by scanning electron microscopy, X-ray diffraction, X-ray photoelectron spectra, and high resolution transmission electron microscopy. The quantity of Ni(OH)(2) is adjusted by controlling the growth time. The results show that the onset potential of the optimum thick Ni(OH)(2)/Fe2O3 films demonstrate a cathodical shift by 400 mV, and the photocurrent density at 1.23 V is enhanced from 0.21 to 0.37 mA cm(-2) compared with the pristine ultrathin alpha-Fe2O3 films. The Ni(OH)(2)/Fe2O3 films show the superior stability up to 20 h. The enhanced PEC performances are attributed to the amorphous Ni(OH)(2) nanosheets that do not affect obviously the light utilization, maintain large specific area to the electrolyte, and store holes produced in Fe2O3 for oxidizing water efficiently in situ with fast regeneration of Ni2+.
引用
收藏
页数:8
相关论文
共 41 条
[1]   Solar Water Splitting by TiO2/CdS/Co-Pi Nanowire Array Photoanode Enhanced with Co-Pi as Hole Transfer Relay and CdS as Light Absorber [J].
Ai, Guanjie ;
Li, Hongxing ;
Liu, Shaopei ;
Mo, Rong ;
Zhong, Jianxin .
ADVANCED FUNCTIONAL MATERIALS, 2015, 25 (35) :5706-5713
[2]   Facile preparation of Fe2O3 thin film with photoelectrochemical properties [J].
Cha, Hyun Gil ;
Song, Jieun ;
Kim, Hyun Sung ;
Shin, Woonsup ;
Yoon, Kyung Byung ;
Kang, Young Soo .
CHEMICAL COMMUNICATIONS, 2011, 47 (08) :2441-2443
[3]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[4]   Hierarchical NiCo2O4 nanosheet-decorated carbon nanotubes towards highly efficient electrocatalyst for water oxidation [J].
Cheng, Hui ;
Su, Yu-Zhi ;
Kuang, Pan-Yong ;
Chen, Gao-Feng ;
Liu, Zhao-Qing .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (38) :19314-19321
[5]  
Cho I. S., 2015, ADV ENERGY MATER, V6
[6]   Hematite-Based Water Splitting with Low Turn-On Voltages [J].
Du, Chun ;
Yang, Xiaogang ;
Mayer, Matthew T. ;
Hoyt, Henry ;
Xie, Jin ;
McMahon, Gregory ;
Bischoping, Gregory ;
Wang, Dunwei .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2013, 52 (48) :12692-12695
[7]   Facile post-growth doping of nanostructured hematite photoanodes for enhanced photoelectrochemical water oxidation [J].
Franking, Ryan ;
Li, Linsen ;
Lukowski, Mark A. ;
Meng, Fei ;
Tan, Yizheng ;
Hamers, Robert J. ;
Jin, Song .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (02) :500-512
[8]   ELECTROCHEMICAL PHOTOLYSIS OF WATER AT A SEMICONDUCTOR ELECTRODE [J].
FUJISHIMA, A ;
HONDA, K .
NATURE, 1972, 238 (5358) :37-+
[9]   Oxide-based nanostructures for photocatalytic and electrocatalytic applications [J].
Ganguly, Aparna ;
Anjaneyulu, Oruganti ;
Ojha, Kasinath ;
Ganguli, Ashok K. .
CRYSTENGCOMM, 2015, 17 (47) :8978-9001
[10]   Electrochemical Method for Synthesis of a ZnFe2O4/TiO2 Composite Nanotube Array Modified Electrode with Enhanced Photoelectrochemical Activity [J].
Hou, Yang ;
Li, Xin-Yong ;
Zhao, Qi-Dong ;
Quan, Xie ;
Chen, Guo-Hua .
ADVANCED FUNCTIONAL MATERIALS, 2010, 20 (13) :2165-2174