Theoretical insights into single-atom catalysts

被引:315
|
作者
Li, Lulu [1 ,2 ]
Chang, Xin [1 ,2 ]
Lin, Xiaoyun [1 ,2 ]
Zhao, Zhi-Jian [1 ,2 ]
Gong, Jinlong [1 ,2 ,3 ]
机构
[1] Tianjin Univ, Sch Chem Engn & Technol, Minist Educ, Key Lab Green Chem Technol, Tianjin 300072, Peoples R China
[2] Collaborat Innovat Ctr Chem Sci & Engn Tianjin, Tianjin 300072, Peoples R China
[3] Int Campus Tianjin Univ, Joint Sch Natl Univ Singapore & Tianjin Univ, Fuzhou 350207, Peoples R China
基金
中国国家自然科学基金;
关键词
ELECTROCHEMICAL CO2 REDUCTION; EFFICIENT OXYGEN REDUCTION; METAL-ORGANIC FRAMEWORKS; N-DOPED CARBON; HYDROGEN EVOLUTION; AMMONIA-SYNTHESIS; NITROGEN REDUCTION; SUPPORTED SINGLE; ACTIVE-SITES; PROPANE DEHYDROGENATION;
D O I
10.1039/d0cs00795a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Single-atom catalysts (SACs) with atomically dispersed metals have emerged as a new class of heterogeneous catalysts and have attracted considerable interest because they offer 100% metal atom utilization and show excellent catalytic behavior compared with traditionally supported nano-particles. However, it is challenging to explore the active sites and catalytic mechanisms of SACs through common characterization methods due to the isolated single atoms. Therefore, employing theoretical calculations to determine the nature of SACs' active sites and the reaction mechanisms is particularly meaningful. This paper describes the nature of SACs by summarizing the diverse applications and properties of SACs, which starts from computational simulation on a couple of important applications of SACs. Then the distinctive and fundamental properties of SACs are discussed. At last, the challenges and future perspectives of computational calculations for SACs are outlined.
引用
收藏
页码:8156 / 8178
页数:23
相关论文
共 50 条
  • [31] Structural evolution of single-atom catalysts
    Zhang, Leilei
    Yang, Ji
    Yang, Xiaofeng
    Wang, Aiqin
    Zhang, Tao
    CHEM CATALYSIS, 2023, 3 (03):
  • [32] Nanomotors driven by single-atom catalysts
    Chen, Shuai
    Wang, Jianhong
    Cao, Shoupeng
    Al-Hilfi, Samir H.
    Yang, Juan
    Bonn, Mischa
    van Hest, Jan C. M.
    Shao, Jingxin
    Mullen, Klaus
    Zhou, Yazhou
    CELL REPORTS PHYSICAL SCIENCE, 2024, 5 (04):
  • [33] Single-atom catalysts for hydroformylation of olefins
    Tao, Shu
    Yang, Da
    Wang, Minmin
    Sun, Guangxun
    Xiong, Gaoyan
    Gao, Wenwen
    Zhang, Youzhi
    Pan, Yuan
    ISCIENCE, 2023, 26 (03)
  • [34] Single-atom Automobile Exhaust Catalysts
    Lu, Yubing
    Zhang, Zihao
    Lin, Fan
    Wang, Huamin
    Wang, Yong
    CHEMNANOMAT, 2020, 6 (12) : 1659 - 1682
  • [35] Single-atom catalysts gained a toehold
    Jacoby, Mitch
    CHEMICAL & ENGINEERING NEWS, 2016, 94 (49) : 29 - 29
  • [36] Biomedical Applications of Single-atom Catalysts
    Yuan, Zhongwen
    He, Lizhen
    Chen, Tianfeng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2020, 41 (12): : 2690 - 2709
  • [37] Transforming Energy with Single-Atom Catalysts
    Ding, Shipeng
    Hulsey, Max J.
    Perez-Ramirez, Javier
    Yang, Ning
    JOULE, 2019, 3 (12) : 2897 - 2929
  • [38] On the Tracks to "Smart" Single-Atom Catalysts
    Melchionna, Michele
    Fornasiero, Paolo
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2025, 147 (03) : 2275 - 2290
  • [39] Magnesium single-atom catalysts with superbasicity
    Xiang-Bin Shao
    Yao Nian
    Song-Song Peng
    Guo-Song Zhang
    Meng-Xuan Gu
    You Han
    Xiao-Qin Liu
    Lin-Bing Sun
    Science China Chemistry, 2023, 66 : 1737 - 1743
  • [40] Single-atom catalysts for electrochemical applications
    Ren, Shan
    Cao, Xi
    Jiang, Zinan
    Yu, Zijuan
    Zhang, Tingting
    Wei, Shaohui
    Fan, Qikui
    Yang, Jian
    Mao, Junjie
    Wang, Dingsheng
    CHEMICAL COMMUNICATIONS, 2023, 59 (18) : 2560 - 2570