Functional Delineation and Differentiation Dynamics of Human CD4+ T Cells Expressing the FoxP3 Transcription Factor

被引:1871
|
作者
Miyara, Makoto [1 ]
Yoshioka, Yumiko [1 ]
Kitoh, Akihiko [1 ]
Shima, Tomoko [1 ]
Wing, Kajsa [1 ]
Niwa, Akira [2 ]
Parizot, Christophe [3 ]
Taflin, Cecile [3 ]
Heike, Toshio [2 ]
Valeyre, Dominique [4 ]
Mathian, Alexis [3 ]
Nakahata, Tatsutoshi [2 ]
Yamaguchi, Tomoyuki [1 ]
Nomura, Takashi [1 ]
Ono, Masahiro [1 ]
Amoura, Zahir [5 ,6 ]
Gorochov, Guy [3 ,6 ]
Sakaguchi, Shimon [1 ,7 ,8 ]
机构
[1] Kyoto Univ, Inst Frontier Med Sci, Dept Expt Pathol, Kyoto 6068507, Japan
[2] Kyoto Univ, Grad Sch Med, Dept Pediat, Kyoto 6068507, Japan
[3] Hop La Pitie Salpetriere, Lab AP HP Immunol Cellulaire & Tissulaire, INSERM, UMR S 945, F-75013 Paris, France
[4] Hop Avicenne, AP HP, Dept Pneumol, F-93000 Bobigny, France
[5] Hop La Pitie Salpetriere, AP HP, Dept Internal Med, F-75013 Paris, France
[6] Univ Paris 06, F-75005 Paris, France
[7] Japan Sci & Technol Agcy, CREST, Kawaguchi, Saitama 3320012, Japan
[8] Osaka Univ, WPI Immunol Frontier Res Ctr, Suita, Osaka 5650871, Japan
基金
日本学术振兴会;
关键词
ARYL-HYDROCARBON RECEPTOR; PERIPHERAL-BLOOD; REGULATORY CELLS; IN-VITRO; HELPER-CELLS; NAIVE; POPULATION; IDENTIFICATION; PROLIFERATION; SUBPOPULATION;
D O I
10.1016/j.immuni.2009.03.019
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
FoxP3 is a key transcription factor for the development and function of natural CD4(+) regulatory T cells (Treg cells). Here we show that human FoxP3(+)CD4(+) T cells were composed of three phenotypically and functionally distinct subpopulations: CD45RA(+)FoxP3(lo) resting Treg cells (rTreg cells) and CD45RA(-)FoxP3(hi) activated Treg cells (aTreg cells), both of which were suppressive in vitro, and cytokine-secreting CD45RA(-)FoxP3(lo) nonsuppressive T cells. The proportion of the three subpopulations differed between cord blood, aged individuals, and patients with immunological diseases. Terminally differentiated aTreg cells rapidly died whereas rTreg cells proliferated and converted into aTreg cells in vitro and in vivo. This was shown by the transfer of rTreg cells into NOD-scid-common gamma-chain-deficient mice and by TCR sequence-based T cell clonotype tracing in peripheral blood in a normal individual. Taken together, the dissection of FoxP3(+) cells into subsets enables one to analyze Treg cell differentiation dynamics and interactions in normal and disease states, and to control immune responses through manipulating particular FoxP3(+) subpopulations.
引用
收藏
页码:899 / 911
页数:13
相关论文
共 50 条
  • [31] Increased frequency and FOXP3 expression of human CD8+CD25High+ T lymphocytes and its relation to CD4 regulatory T cells in patients with hepatocellular carcinoma
    Zahran, Asmaa M.
    Nafady-Hego, Hanaa
    Mansor, Shima G.
    Abbas, Wael A.
    Abdel-Malek, Mohamed O.
    Mekky, Mohamed A.
    Hetta, Helal F.
    HUMAN IMMUNOLOGY, 2019, 80 (07) : 510 - 516
  • [32] The anti-CXCL4 antibody depletes CD4(+)CD25(+)FOXP3(+) regulatory T cells in CD4+ T cells from chronic osteomyelitis patients by the STAT5 pathway
    Huang, Kai
    Ge, Shuyu
    ANNALS OF PALLIATIVE MEDICINE, 2020, 9 (05) : 2723 - +
  • [33] Influenza matrix 1-specific human CD4+ FOXP3+ and FOXP3- regulatory T cells can be detected long after viral clearance
    Piersma, Sytse J.
    van der Hulst, Jeanette M.
    Kwappenberg, Kitty M. C.
    Goedemans, Renske
    van der Minne, Caroline E.
    van der Burg, Sjoerd H.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2010, 40 (11) : 3064 - 3074
  • [34] TNFR2-expressing CD4+Foxp3+ regulatory T cells in cancer immunology and immunotherapy
    He, Jiang
    Li, Ruixin
    Chen, Yibo
    Hu, Yuanjia
    Chen, Xin
    CANCER IMMUNOTHERAPY, 2019, 164 : 101 - 117
  • [35] Cytokine profile of CD4+ CD25-FoxP3+ T cells in tumor-draining lymph nodes from patients with breast cancer
    Niakan, Andisheh
    Faghih, Zahra
    Talei, Abdol-Rasoul
    Ghaderi, Abbas
    MOLECULAR IMMUNOLOGY, 2019, 116 : 90 - 97
  • [36] Monotherapy rapamycin allows an increase of CD4+ CD25bright+ FoxP3+ T cells in renal recipients
    Hendrikx, Thijs K.
    Velthuis, Jurjen H. L.
    Klepper, Mariska
    van Gurp, Eveline
    Geel, Annemarie
    Schoordijk, Wenda
    Baan, Carla C.
    Weimar, Willem
    TRANSPLANT INTERNATIONAL, 2009, 22 (09) : 884 - 891
  • [37] Reprogrammed CD4+ T Cells That Express FoxP3+ Control Inhibitory Antibody Formation in Hemophilia A Mice
    Herzog, Roland W.
    Kuteyeva, Veronica
    Saboungi, Rania
    Terhorst, Cox
    Biswas, Moanaro
    FRONTIERS IN IMMUNOLOGY, 2019, 10
  • [38] Inhibition of Allograft Inflammatory Factor-1 in Dendritic Cells Restrains CD4+ T Cell Effector Responses and Induces CD25+Foxp3+ T Regulatory Subsets
    Elizondo, Diana M.
    Andargie, Temesgen E.
    Yang, Dazhi
    Kacsinta, Apollo D.
    Lipscomb, Michael W.
    FRONTIERS IN IMMUNOLOGY, 2017, 8
  • [39] Transcription factor Foxp1 regulates Foxp3 chromatin binding and coordinates regulatory T cell function
    Konopacki, Catherine
    Pritykin, Yuri
    Rubtsov, Yury
    Leslie, Christina S.
    Rudensky, Alexander Y.
    NATURE IMMUNOLOGY, 2019, 20 (02) : 232 - +
  • [40] Defining a functionally distinct subset of human memory CD4+ T cells that are CD25POS and FOXP3NEG
    Triplett, Todd A.
    Curti, Brendan D.
    Bonafede, Peter R.
    Miller, William L.
    Walker, Edwin B.
    Weinberg, Andrew D.
    EUROPEAN JOURNAL OF IMMUNOLOGY, 2012, 42 (07) : 1893 - 1905