Omics data input for metabolic modeling

被引:37
作者
Rai, Amit [1 ]
Saito, Kazuki [1 ,2 ]
机构
[1] Chiba Univ, Grad Sch Pharmaceut Sci, Chuo Ku, 1-8-1 Inohana, Chiba 2608675, Japan
[2] RIKEN Ctr Sustainable Resource Sci, Tsurumi Ku, 1-7-22 Suehiro Cho, Yokohama, Kanagawa 2300045, Japan
关键词
C-13 FLUX ANALYSIS; NETWORK RECONSTRUCTION; FUNCTIONAL ANNOTATION; RNA-SEQ; ARABIDOPSIS; GENOMICS; INTEGRATION; EXPRESSION; PROTEOMICS; PATHWAYS;
D O I
10.1016/j.copbio.2015.10.010
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Recent advancements in high-throughput large-scale analytical methods to sequence genomes of organisms, and to quantify gene expression, proteins, lipids and metabolites have changed the paradigm of metabolic modeling. The cost of data generation and analysis has decreased significantly, which has allowed exponential increase in the amount of omics data being generated for an organism in a very short time. Compared to progress made in microbial metabolic modeling, plant metabolic modeling still remains limited due to its complex genomes and compartmentalization of metabolic reactions. Herein, we review and discuss different omics-datasets with potential application in the functional genomics. In particular, this review focuses on the application of omics-datasets towards construction and reconstruction of plant metabolic models.
引用
收藏
页码:127 / 134
页数:8
相关论文
共 50 条
[21]   An advanced systems biology framework of feature engineering for cold tolerance genes discovery from integrated omics and non-omics data in soybean [J].
Kao, Pei-Hsiu ;
Baiya, Supaporn ;
Lai, Zheng-Yuan ;
Huang, Chih-Min ;
Jhan, Li-Hsin ;
Lin, Chian-Jiun ;
Lai, Ya-Syuan ;
Kao, Chung-Feng .
FRONTIERS IN PLANT SCIENCE, 2022, 13
[22]   OmixLitMiner: A Bioinformatics Tool for Prioritizing Biological Leads from 'Omics Data Using Literature Retrieval and Data Mining [J].
Steffen, Pascal ;
Wu, Jemma ;
Hariharan, Shubhang ;
Voss, Hannah ;
Raghunath, Vijay ;
Molloy, Mark P. ;
Schlueter, Hartrnut .
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2020, 21 (04)
[23]   "Omics" data and levels of evidence for biomarker discovery [J].
Ghosh, Debashis ;
Poisson, Laila M. .
GENOMICS, 2009, 93 (01) :13-16
[24]   'Omics Data Sharing [J].
Field, Dawn ;
Sansone, Susanna-Assunta ;
Collis, Amanda ;
Booth, Tim ;
Dukes, Peter ;
Gregurick, Susan K. ;
Kennedy, Karen ;
Kolar, Patrik ;
Kolker, Eugene ;
Maxon, Mary ;
Millard, Sian ;
Mugabushaka, Alexis-Michel ;
Perrin, Nicola ;
Remacle, Jacques E. ;
Remington, Karin ;
Rocca-Serra, Philippe ;
Taylor, Chris F. ;
Thorley, Mark ;
Tiwari, Bela ;
Wilbanks, John .
SCIENCE, 2009, 326 (5950) :234-236
[25]   Integrative modeling of multi-omics data to identify cancer drivers and infer patient-specific gene activity [J].
Pavel, Ana B. ;
Sonkin, Dmitriy ;
Reddy, Anupama .
BMC SYSTEMS BIOLOGY, 2016, 10
[26]   Transforming omics data into context: Bioinformatics on genomics and proteomics raw data [J].
Perco, Paul ;
Rapberger, Ronald ;
Siehs, Christian ;
Lukas, Arno ;
Oberbauer, Rainer ;
Mayer, Gert ;
Mayer, Bernd .
ELECTROPHORESIS, 2006, 27 (13) :2659-2675
[27]   Challenges in the Integration of Omics and Non-Omics Data [J].
Lopez de Maturana, Evangelina ;
Alonso, Lola ;
Alarcon, Pablo ;
Adoracion Martin-Antoniano, Isabel ;
Pineda, Silvia ;
Piorno, Lucas ;
Luz Calle, M. ;
Malats, Nuria .
GENES, 2019, 10 (03)
[28]   Advantages of omics approaches for elucidating metabolic changes in diabetic peripheral neuropathy [J].
Yako, Hideji ;
Niimi, Naoko ;
Takaku, Shizuka ;
Sango, Kazunori .
FRONTIERS IN ENDOCRINOLOGY, 2023, 14
[29]   Visualizing multi-omics data in metabolic networks with the software Omix-A case study [J].
Droste, Peter ;
Miebach, Stephan ;
Niedenfuehr, Sebastian ;
Wiechert, Wolfgang ;
Noeh, Katharina .
BIOSYSTEMS, 2011, 105 (02) :154-161
[30]   Multi-Omics Data Analysis Uncovers Molecular Networks and Gene Regulators for Metabolic Biomarkers [J].
Jung, Su Yon .
BIOMOLECULES, 2021, 11 (03) :1-13