Novel multi-convolutional neural network fusion approach for smile recognition

被引:3
作者
Chen, Jiongwei [1 ]
Jin, Yi [1 ]
Akram, Muhammad Waqar [1 ]
Li, Kuan [1 ]
Chen, Enhong [2 ]
机构
[1] Univ Sci & Technol China, Sch Engn Sci, Hefei 230026, Anhui, Peoples R China
[2] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei 230026, Anhui, Peoples R China
基金
美国国家科学基金会; 中国国家自然科学基金;
关键词
Smile recognition; Convolutional neural networks; Deep learning; Model fusion; Unconstrained face images;
D O I
10.1007/s11042-018-6945-x
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The smile is one of the most common human facial expressions encountered in our daily lives. Smile recognition can be used in many scenarios, such as emotion monitoring, human-to-robot games, and camera shutter control, which is why smile recognition has received significant attention of researchers. This topic is a significant but challenging problem, particularly in unconstrained scenarios. The variety of facial sizes, illumination conditions, head poses, occlusions, and other factors increases the difficulty of this problem. To address this problem, we propose a novel multiple convolutional neural network (CNN) fusion approach in which a face-based CNN and a mouth-based CNN are used to perform smile recognition. According to the results obtained using the two CNNs, we fuse the two networks using a specified weight and choose the higher-probability result as the final result. Experimental results indicate that the method is effective on a real-world smile dataset (GENKI-4K). The smile recognition rate of the proposed method is improved by 1.6% and 3.3% relative to the face-based CNN and mouth-based CNN, respectively, and the proposed method outperforms the most of previous methods.
引用
收藏
页码:15887 / 15907
页数:21
相关论文
共 50 条
  • [31] Smile Detection using Convolutional Neural Network and Fuzzy Logic
    Kh-Madhloom, Jamal
    Diwan, Sinan Adnan
    Abdulhussein, Zainab Ali
    JOURNAL OF INFORMATION SCIENCE AND ENGINEERING, 2020, 36 (02) : 269 - 278
  • [32] Convolutional Neural Network (CNN) for Image Detection and Recognition
    Chauhan, Rahul
    Ghanshala, Kamal Kumar
    Joshi, R. C.
    2018 FIRST INTERNATIONAL CONFERENCE ON SECURE CYBER COMPUTING AND COMMUNICATIONS (ICSCCC 2018), 2018, : 278 - 282
  • [33] Optimization of Convolutional Neural Network Target Recognition Algorithm
    Guo, Chen
    Jiang, Yuanyuan
    14TH INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS, NETWORKING AND MOBILE COMPUTING (WICOM 2018), 2018, 306 : 426 - 433
  • [34] Violence recognition using convolutional neural network: A survey
    Tripathi, Gaurav
    Singh, Kuldeep
    Vishwakarma, Dinesh Kumar
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 39 (05) : 7931 - 7952
  • [35] An Automatic Instrument Recognition Approach Based on Deep Convolutional Neural Network
    Ke, Jiangyan
    Lin, Rongchuan
    Sharma, Ashutosh
    RECENT ADVANCES IN ELECTRICAL & ELECTRONIC ENGINEERING, 2021, 14 (06) : 660 - 670
  • [36] A Novel Approach for Biofilm Detection Based on a Convolutional Neural Network
    Dimauro, Giovanni
    Deperte, Francesca
    Maglietta, Rosalia
    Bove, Mario
    La Gioia, Fabio
    Reno, Vito
    Simone, Lorenzo
    Gelardi, Matteo
    ELECTRONICS, 2020, 9 (06)
  • [37] A Novel Approach for Sentiment Classification by Using Convolutional Neural Network
    Kalaivani, M. S.
    Jayalakshmi, S.
    PROCEEDINGS OF SECOND INTERNATIONAL CONFERENCE ON SUSTAINABLE EXPERT SYSTEMS (ICSES 2021), 2022, 351 : 143 - 152
  • [38] Biased face patching approach for age invariant face recognition using convolutional neural network
    Nimbarte M.
    Bhoyar K.K.
    Nimbarte, Mrudula (mrudula_inimbarte@rediffmail.com), 1600, Inderscience Publishers, 29, route de Pre-Bois, Case Postale 856, CH-1215 Geneva 15, CH-1215, Switzerland (19): : 103 - 124
  • [39] Deep Convolutional Neural Network for Multi-Modal Image Restoration and Fusion
    Deng, Xin
    Dragotti, Pier Luigi
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2021, 43 (10) : 3333 - 3348
  • [40] Multi Kernel Fusion Convolutional Neural Network for Wind Turbine Fault Diagnosis
    Pang, Yanhua
    Jiang, Guoqian
    He, Qun
    Xie, Ping
    2019 CHINESE AUTOMATION CONGRESS (CAC2019), 2019, : 2871 - 2876