COVID-19 surveillance in Southeastern Virginia using wastewater-based epidemiology

被引:328
|
作者
Gonzalez, Raul [1 ]
Curtis, Kyle [1 ]
Bivins, Aaron [2 ]
Bibby, Kyle [2 ]
Weir, Mark H. [3 ]
Yetka, Kathleen [1 ]
Thompson, Hannah [1 ]
Keeling, David [1 ]
Mitchell, Jamie [1 ]
Gonzalez, Dana [1 ]
机构
[1] Hampton Roads Sanitat Dist, 1434 Air Rail Ave, Virginia Beach, VA 23455 USA
[2] Univ Notre Dame, Civil & Environm Engn & Earth Sci, 156 Fitzpatrick Hall, Notre Dame, IN 46556 USA
[3] Ohio State Univ, Div Environm Hlth Sci, Coll Publ Hlth, 1841 Neil Ave, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Wastewater-based epidemiology; COVID-19; SARS-CoV-2; RT-ddPCR; VIRUSES;
D O I
10.1016/j.watres.2020.116296
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Wastewater-based epidemiology (WBE) has been used to analyze markers in wastewater treatment plant (WWTP) influent to characterize emerging chemicals, drug use patterns, or disease spread within com-munities. This approach can be particularly helpful in understanding outbreaks of disease like the novel Coronavirus disease-19 (COVID-19) when combined with clinical datasets. In this study, three RT-ddPCR assays (N1, N2, N3) were used to detect severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA in weekly samples from nine WWTPs in southeastern Virginia. In the first several weeks of sampling, SARS-CoV-2 detections were sporadic. Frequency of detections and overall concentrations of RNA within samples increased from mid March into late July. During the twenty-one week study, SARS-CoV-2 concentrations ranged from 10(1) to 10(4) copies 100 mL(-1) in samples where viral RNA was detected. Fluctuations in population normalized loading rates in several of the WWTP service areas agreed with known outbreaks during the study. Here we propose several ways that data can be presented spatially and temporally to be of greatest use to public health officials. As the COVID-19 pandemic wanes, it is likely that communities will see increased incidence of small, localized outbreaks. In these instances, WBE could be used as a pre-screening tool to better target clinical testing needs in communities with limited resources. (c) 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND license. (http://creativecommons.org/licenses/by-nc-nd/4.0/)
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Lifting of travel restrictions brings additional noise in COVID-19 surveillance through wastewater-based epidemiology in post-pandemic period
    Li, Xuan
    Li, Jibin
    Minguez-Alarcon, Lidia
    Liu, Huan
    van Loosdrecht, Mark C. M.
    Wang, Qilin
    WATER RESEARCH, 2025, 274
  • [22] COVID-19 (SARS-CoV-2) outbreak monitoring using wastewater-based epidemiology in Qatar
    Saththasivam, Jayaprakash
    El-Malah, Shimaa S.
    Gomez, Tricia A.
    Jabbar, Khadeeja A.
    Remanan, Reshma
    Krishnankutty, Arun K.
    Ogunbiyi, Oluwaseun
    Rasool, Kashif
    Ashhab, Sahel
    Rashkeev, Sergey
    Bensaad, Meryem
    Ahmed, Ayeda A.
    Mohamoud, Yasmin A.
    Malek, Joel A.
    Abu Raddad, Laith J.
    Jeremijenko, Andrew
    Abu Halaweh, Hussein A.
    Lawler, Jenny
    Mahmoud, Khaled A.
    SCIENCE OF THE TOTAL ENVIRONMENT, 2021, 774
  • [23] WASTEWATER-BASED EPIDEMIOLOGY AS A STRATEGY FOR COMMUNITY MONITORING, MAPPING OF HOTSPOTS AND EARLY WARNING SYSTEMS OF COVID-19
    Sodre, Fernando F.
    Brandao, Cristina C. S.
    Vizzotto, Carla S.
    Maldaner, Adriano O.
    QUIMICA NOVA, 2020, 43 (04): : 515 - 519
  • [24] Impact of the COVID-19 pandemic on the prevalence of influenza A and respiratory syncytial viruses elucidated by wastewater-based epidemiology
    Ando, Hiroki
    Ahmed, Warish
    Iwamoto, Ryo
    Ando, Yoshinori
    Okabe, Satoshi
    Kitajima, Masaaki
    SCIENCE OF THE TOTAL ENVIRONMENT, 2023, 880
  • [25] Artificial neural network-based estimation of COVID-19 case numbers and effective reproduction rate using wastewater-based epidemiology
    Jiang, Guangming
    Wu, Jiangping
    Weidhaas, Jennifer
    Li, Xuan
    Chen, Yan
    Mueller, Jochen
    Li, Jiaying
    Kumar, Manish
    Zhou, Xu
    Arora, Sudipti
    Haramoto, Eiji
    Sherchan, Samendra
    Orive, Gorka
    Lertxundi, Unax
    Honda, Ryo
    Kitajima, Masaaki
    Jackson, Greg
    WATER RESEARCH, 2022, 218
  • [26] Wastewater-based epidemiology: A Brazilian SARS-COV-2 surveillance experience
    Bueno, Rodrigo de Freitas
    Mantovani Claro, Ieda Carolina
    Augusto, Matheus Ribeiro
    Alves Duran, Adriana Feliciano
    Bomediano Camillo, Livia de Moraes
    Cabral, Aline Diniz
    Sodre, Fernando Fabriz
    Silveira Brandao, Cristina Celia
    Vizzotto, Carla Simone
    Silveira, Rafaella
    Mendes, Geovana de Melo
    Arruda, Andrea Fernandes
    de Brito, Nubia Natalia
    Souza Machado, Bruna Aparecida
    Mendes Duarte, Gabriela Rodrigues
    Aguiar-Oliveira, Maria de Lourdes
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2022, 10 (05):
  • [27] Wastewater-based epidemiology for surveillance of infectious diseases in healthcare settings
    Hassard, Francis
    Bajon-Fernandez, Yadira
    Castro-Gutierrez, Victor
    CURRENT OPINION IN INFECTIOUS DISEASES, 2023, 36 (04) : 288 - 295
  • [28] Evaluating the impact of COVID-19 countermeasures on alcohol consumption through wastewater-based epidemiology: A case study in Belgium
    Boogaerts, Tim
    Bertels, Xander
    Pussig, Bram
    Quireyns, Maarten
    Toebosch, Louis
    Van Wichelen, Natan
    Dumitrascu, Catalina
    Mathei, Catherina
    Lahousse, Lies
    Aertgeerts, Bert
    De Loof, Hans
    Covaci, Adrian
    van Nuijs, Alexander L. N.
    ENVIRONMENT INTERNATIONAL, 2022, 170
  • [29] A scoping review of global SARS-CoV-2 wastewater-based epidemiology in light of COVID-19 pandemic
    Rashid, Siti Aishah
    Rajendiran, Sakshaleni
    Nazakat, Raheel
    Sham, Noraishah Mohammad
    Hasni, Nurul Amalina Khairul
    Anasir, Mohd Ishtiaq
    Kamel, Khayri Azizi
    Robat, Rosnawati Muhamad
    HELIYON, 2024, 10 (09)
  • [30] An integrated biosensor system with mobile health and wastewater-based epidemiology (iBMW) for COVID-19 pandemic
    Mao, Kang
    Zhang, Hua
    Yang, Zhugen
    BIOSENSORS & BIOELECTRONICS, 2020, 169 (169)