On-line Learning of Parametric Mixture Models for Light Transport Simulation

被引:5
|
作者
Vorba, Jiri [1 ]
Karlik, Ondrej [1 ]
Sik, Martin [1 ]
Ritschel, Tobias [2 ]
Krivanek, Jaroslav [1 ]
机构
[1] Charles Univ Prague, Prague, Czech Republic
[2] MPI Informat, Saarbrucken, Germany
来源
ACM TRANSACTIONS ON GRAPHICS | 2014年 / 33卷 / 04期
关键词
light transport simulation; importance sampling; parametric density estimation; on-line expectation maximization;
D O I
10.1145/2601097.2601203
中图分类号
TP31 [计算机软件];
学科分类号
081202 ; 0835 ;
摘要
Monte Carlo techniques for light transport simulation rely on importance sampling when constructing light transport paths. Previous work has shown that suitable sampling distributions can be recovered from particles distributed in the scene prior to rendering. We propose to represent the distributions by a parametric mixture model trained in an on-line (i.e. progressive) manner from a potentially infinite stream of particles. This enables recovering good sampling distributions in scenes with complex lighting, where the necessary number of particles may exceed available memory. Using these distributions for sampling scattering directions and light emission significantly improves the performance of state-of-the-art light transport simulation algorithms when dealing with complex lighting.
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Simulation for on-line planning and control
    Shachnai, H
    ESM'99 - MODELLING AND SIMULATION: A TOOL FOR THE NEXT MILLENNIUM, VOL II, 1999, : 18 - 18
  • [42] Parametric on-line algorithms for packing rectangles and boxes
    Miyazawa, FK
    Wakabayashi, Y
    EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2003, 150 (02) : 281 - 292
  • [43] Provision of data for on-line simulation
    Rolfs, T
    Bornemann, C
    Kollsch, G
    Londong, J
    WATER SCIENCE AND TECHNOLOGY, 2001, 43 (11) : 215 - 222
  • [44] ON-LINE SIMULATION OF RESONANT PARTICLES
    FRIED, BD
    LIU, CS
    SAGDEEV, RZ
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1969, 14 (11): : 1034 - &
  • [45] On-line Chinese signature verification with mixture of experts
    Cheng, NJ
    Wen, CJ
    Yau, HF
    Liu, DH
    Liu, K
    Cheng, KC
    Jeng, BS
    32ND ANNUAL 1998 INTERNATIONAL CARNAHAN CONFERENCE ON SECURITY TECHNOLOGY, 1998, : 244 - 247
  • [46] On-line EM algorithm for mixture of local experts
    Sato, M
    Ishii, S
    ICONIP'98: THE FIFTH INTERNATIONAL CONFERENCE ON NEURAL INFORMATION PROCESSING JOINTLY WITH JNNS'98: THE 1998 ANNUAL CONFERENCE OF THE JAPANESE NEURAL NETWORK SOCIETY - PROCEEDINGS, VOLS 1-3, 1998, : 1397 - 1401
  • [47] The On-line Construction of Discourse Models
    Oakhill, Jane
    Garnham, Alan
    Vonk, Wietske
    LANGUAGE AND COGNITIVE PROCESSES, 1989, 4 (3-4): : SI263 - SI286
  • [48] Fast incremental clustering of Gaussian mixture speaker models for scaling up retrieval in on-line broadcast
    Rougui, J. E.
    Rziza, M.
    Aboutajdine, D.
    Gelgon, M.
    Martinez, J.
    2006 IEEE International Conference on Acoustics, Speech and Signal Processing, Vols 1-13, 2006, : 5379 - 5382
  • [49] Dynamics of on-line competitive learning
    Biehl, M
    Freking, A
    Reents, G
    EUROPHYSICS LETTERS, 1997, 38 (01): : 73 - 78
  • [50] ON-LINE LEARNING - COSTS AND ROI
    Garbett, Chris
    5TH INTERNATIONAL CONFERENCE OF EDUCATION, RESEARCH AND INNOVATION (ICERI 2012), 2012, : 5228 - 5237