Electrospun Honeycomb as Nests for Controlled Osteoblast Spatial Organization

被引:26
作者
Nedjari, Salima [1 ]
Eap, Sandy [2 ]
Hebraud, Anne [1 ]
Wittmer, Corinne R. [1 ]
Benkirane-Jessel, Nadia [2 ]
Schlatter, Guy [1 ]
机构
[1] Univ Strasbourg, CNRS, ICPEES, UMR 7515, F-67089 Strasbourg, France
[2] Univ Strasbourg, INSERM, U1109, F-67085 Strasbourg, France
关键词
bone regeneration; electrospinning; honeycomb; micro-structured scaffolds; osteoblasts-like cells; DRUG-DELIVERY; NANOFIBERS; DIFFERENTIATION; GEOMETRY; COLLAGEN; FIBERS; CELLS; BONE;
D O I
10.1002/mabi.201400226
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Honeycomb nanofibrous scaffolds were elaborated by electrospinning onto micro-patterned collectors either with poly(epsilon-caprolactone) (PCL) or poly(D, L-lactic acid) (PLA). The unimodal distribution of fiber diameters, observed for PLA, led to relatively flat scaffolds; on the other hand, the bimodal distribution of PCL fiber diameters significantly increased the relief of the scaffolds' patterns due to the preferential deposition of the thick fiber portions on the walls of the collector's patterns via preferential electrostatic interaction. Finally, a biological evaluation demonstrated the effect of the scaffolds' relief on the spatial organization of MG63 osteoblast-like cells. Mimicking hemi-osteons, cell gathering was observed inside PCL honeycomb nests with a size ranging from 80 to 360 mu m.
引用
收藏
页码:1580 / 1589
页数:10
相关论文
共 36 条
[1]   From self-assembly of electrospun nanofibers to 3D cm thick hierarchical foams [J].
Ahirwal, Deepak ;
Hebraud, Anne ;
Kadar, Roland ;
Wilhelm, Manfred ;
Schlatter, Guy .
SOFT MATTER, 2013, 9 (11) :3164-3172
[2]   Osteoblast adhesion on biomaterials [J].
Anselme, K .
BIOMATERIALS, 2000, 21 (07) :667-681
[3]   25th Anniversary Article: Scalable Multiscale Patterned Structures Inspired by Nature: the Role of Hierarchy [J].
Bae, Won-Gyu ;
Kim, Hong Nam ;
Kim, Doogon ;
Park, Suk-Hee ;
Jeong, Hoon Eui ;
Suh, Kahp-Yang .
ADVANCED MATERIALS, 2014, 26 (05) :675-699
[4]   Engineering Substrate Topography at the Micro- and Nanoscale to Control Cell Function [J].
Bettinger, Christopher J. ;
Langer, Robert ;
Borenstein, Jeffrey T. .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2009, 48 (30) :5406-5415
[5]   Geometry as a Factor for Tissue Growth: Towards Shape Optimization of Tissue Engineering Scaffolds [J].
Bidan, Cecile M. ;
Kommareddy, Krishna P. ;
Rumpler, Monika ;
Kollmannsberger, Philip ;
Fratzl, Peter ;
Dunlop, John W. C. .
ADVANCED HEALTHCARE MATERIALS, 2013, 2 (01) :186-194
[6]   How Linear Tension Converts to Curvature: Geometric Control of Bone Tissue Growth [J].
Bidan, Cecile M. ;
Kommareddy, Krishna P. ;
Rumpler, Monika ;
Kollmannsberger, Philip ;
Brechet, Yves J. M. ;
Fratzl, Peter ;
Dunlop, John W. C. .
PLOS ONE, 2012, 7 (05)
[7]   Geometric control of cell life and death [J].
Chen, CS ;
Mrksich, M ;
Huang, S ;
Whitesides, GM ;
Ingber, DE .
SCIENCE, 1997, 276 (5317) :1425-1428
[8]   Engineering the Microstructure of Electrospun Fibrous Scaffolds by Microtopography [J].
Cheng, Qian ;
Lee, Benjamin L. -P. ;
Komvopoulos, Kyriakos ;
Li, Song .
BIOMACROMOLECULES, 2013, 14 (05) :1349-1360
[9]   Selective Nanofiber Deposition through Field-Enhanced Electrospinning [J].
Ding, Zhenwen ;
Salim, Amani ;
Ziaie, Babak .
LANGMUIR, 2009, 25 (17) :9648-9652
[10]   Nanotechnological strategies for engineering complex tissues [J].
Dvir, Tal ;
Timko, Brian P. ;
Kohane, Daniel S. ;
Langer, Robert .
NATURE NANOTECHNOLOGY, 2011, 6 (01) :13-22