Heptagon amplitude in the multi-Regge regime

被引:16
作者
Bartels, J. [1 ]
Schomerus, V. [2 ]
Sprenger, M. [2 ]
机构
[1] Univ Hamburg, Inst Theoret Phys 2, D-22671 Hamburg, Germany
[2] DESY Hamburg, Theory Grp, D-22607 Hamburg, Germany
关键词
Scattering Amplitudes; AdS-CFT Correspondence; Bethe Ansatz;
D O I
10.1007/JHEP10(2014)067
中图分类号
O412 [相对论、场论]; O572.2 [粒子物理学];
学科分类号
摘要
As we have shown in previous work, the high energy limit of scattering amplitudes in N = 4 supersymmetric Yang-Mills theory at strong coupling corresponds to the infrared limit of the 1-dimensional quantum integrable system that solves minimal area problems in AdS(5). This insight can be developed into a systematic algorithm to compute the strong coupling limit of amplitudes in the multi-Regge regime through the solution of auxiliary Bethe Ansatz equations. We apply this procedure to compute the scattering amplitude for n = 7 external gluons in different multi-Regge regions at infinite 't Hooft coupling. Our formulas are remarkably consistent with the expected form of 7-gluon Regge cut contributions in perturbative gauge theory. A full description of the general algorithm and a derivation of results will be given in a forthcoming paper.
引用
收藏
页数:15
相关论文
共 49 条
[41]   Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space [J].
Broedel, Johannes ;
Sprenger, Martin .
JOURNAL OF HIGH ENERGY PHYSICS, 2016, (05) :1-31
[42]   Six-point remainder function in multi-Regge-kinematics: an efficient approach in momentum space [J].
Johannes Broedel ;
Martin Sprenger .
Journal of High Energy Physics, 2016
[43]   The four-loop remainder function and multi-Regge behavior at NNLLA in planar \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} $\end{document} = 4 super-Yang-Mills theory [J].
Lance J. Dixon ;
James M. Drummond ;
Claude Duhr ;
Jeffrey Pennington .
Journal of High Energy Physics, 2014 (6)
[44]   Multi-loop positivity of the planar N=4 SYM six-point amplitude [J].
Dixon, Lance J. ;
von Hippel, Matt ;
McLeod, Andrew J. ;
Trnka, Jaroslav .
JOURNAL OF HIGH ENERGY PHYSICS, 2017, (02)
[45]   Entanglement entropy, OTOC and bootstrap in 2D CFTs from Regge and light cone limits of multi-point conformal block [J].
Kusuki, Yuya ;
Miyaji, Masamichi .
JOURNAL OF HIGH ENERGY PHYSICS, 2019, 2019 (08)
[46]   Entanglement entropy, OTOC and bootstrap in 2D CFTs from Regge and light cone limits of multi-point conformal block [J].
Yuya Kusuki ;
Masamichi Miyaji .
Journal of High Energy Physics, 2019
[47]   Higgs-regularized three-loop four-gluon amplitude in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$ \mathcal{N} = 4 $\end{document} SYM: exponentiation and Regge limits [J].
Johannes M. Henn ;
Stephen G. Naculich ;
Howard J. Schnitzer ;
Marcus Spradlin .
Journal of High Energy Physics, 2010 (4)
[48]   Multi-Regge limit of the two-loop five-point amplitudes in N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 super Yang-Mills and N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 8 supergravity [J].
Simon Caron-Huot ;
Dmitry Chicherin ;
Johannes Henn ;
Yang Zhang ;
Simone Zoia .
Journal of High Energy Physics, 2020 (10)
[49]   Multi-loop positivity of the planar N\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \mathcal{N} $$\end{document} = 4 SYM six-point amplitude [J].
Lance J. Dixon ;
Matt von Hippel ;
Andrew J. McLeod ;
Jaroslav Trnka .
Journal of High Energy Physics, 2017 (2)