Effect of Preliminary Heating of a Polymeric Polytetrafluoroethylene Target on its Ablation by a Continuous CO2 Laser

被引:6
|
作者
Tolstopyatov, E. M. [1 ]
Grakovich, P. N. [1 ]
Ivanov, L. F. [1 ]
Allayarov, S. R. [2 ,3 ]
Olkhov, Yu. A. [2 ]
Dixon, D. A. [3 ]
机构
[1] Natl Acad Sci Belarus, VA Belyi Met Polymer Res Inst, Gomel 246050, BELARUS
[2] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia
[3] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA
关键词
polytetrafluoroethylene; molecular-topologic structure; laser ablation; continuous CO2 laser; DSC; TGA; polymeric target; MOLECULAR-MASS DISTRIBUTION; THERMOMECHANICAL PROPERTIES; LASER DEPOSITION; RADIATION; TEMPERATURE;
D O I
10.1007/s10946-015-9527-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study experimentally the effect of pre-heating polytetrafluoroethylene (PTFE) on its laser ablation rate from a continuous wave CO2 laser. The ablation rate and the fraction of fiber formed grow significantly as the initial temperature of the polymeric target increases from 292 to 683 K. The ablation rate obeys two exponential dependences on the temperature with different apparent activation energies for the high-temperature and low-temperature regimes. We find that a crossover temperature of 460 K correlates best with the temperature for sol-gel transformation in the bulk. The faster rates at higher temperature are due to the ability of the reactive species generated in the ablation process to react with more of the system.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [31] Micromachining of microchannel on the polycarbonate substrate with CO2 laser direct-writing ablation
    Qi, Heng
    Chen, Tao
    Yao, Liying
    Zuo, Tiechuan
    OPTICS AND LASERS IN ENGINEERING, 2009, 47 (05) : 594 - 598
  • [32] One dimension dynamic ablation of bovine shank bone with pulse CO2 laser
    Zhang, Xianzeng
    Xie, Shusen
    Zhan, Zhenlin
    Ye, Qing
    OPTICS IN HEALTH CARE AND BIOMEDICAL OPTICS III, 2008, 6826
  • [33] Visualization of liquid-assisted hard tissue ablation with a pulsed CO2 laser
    Li, X. W.
    Chen, C. G.
    Zhang, X. Z.
    Zhan, Z. L.
    Xie, S. S.
    LASER PHYSICS LETTERS, 2015, 12 (01)
  • [34] Effect of defocused CO2 laser on equine tissue perfusion
    Bergh, A.
    Nyman, G.
    Lundeberg, T.
    Drevemo, S.
    ACTA VETERINARIA SCANDINAVICA, 2006, 47 (01) : 33 - 42
  • [35] Effect of nonionic surfactant addition on Pyrex glass ablation using water-assisted CO2 laser processing
    Chung, C. K.
    Liao, M. W.
    Lin, S. L.
    APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2010, 99 (01): : 285 - 290
  • [36] Effect of air pressure on propulsion with TEA CO2 laser
    Pakhomov, AV
    Lin, J
    Herren, A
    HIGH-POWER LASER ABLATION V, PTS 1 AND 2, 2004, 5448 : 1017 - 1027
  • [37] Reflection Fourier transform infrared spectroscopy of polymer targets for CO2 laser ablation
    Sinko, John E.
    Schlecht, Clifford A.
    HIGH-POWER LASER ABLATION VII, PTS 1-2, 2008, 7005
  • [38] Formation of Au-carbon nanoparticles by laser ablation under pressurized CO2
    Mardis, Mardiansyah
    Wahyudiono
    Takada, Noriharu
    Kanda, Hideki
    Goto, Motonobu
    ASIA-PACIFIC JOURNAL OF CHEMICAL ENGINEERING, 2018, 13 (02)
  • [39] Laser heating effect on Raman analysis of CO2 co-existing as liquid and vapor in olivine-hosted melt inclusion bubbles
    DeVitre, Charlotte L.
    Dayton, Kyle
    Gazel, Esteban
    Pamukcu, Ayla
    Gaetani, Glenn
    Wieser, Penny E.
    VOLCANICA, 2023, 6 (02): : 201 - 219
  • [40] Carbon-ZnO nanocomposite thin films for enhanced electron field emission characteristics prepared by continuous wave CO2 laser ablation
    Kaushik, Vishakha
    Shukla, A. K.
    Vankar, V. D.
    VACUUM, 2014, 106 : 21 - 26