Effect of Preliminary Heating of a Polymeric Polytetrafluoroethylene Target on its Ablation by a Continuous CO2 Laser

被引:6
|
作者
Tolstopyatov, E. M. [1 ]
Grakovich, P. N. [1 ]
Ivanov, L. F. [1 ]
Allayarov, S. R. [2 ,3 ]
Olkhov, Yu. A. [2 ]
Dixon, D. A. [3 ]
机构
[1] Natl Acad Sci Belarus, VA Belyi Met Polymer Res Inst, Gomel 246050, BELARUS
[2] Russian Acad Sci, Inst Problems Chem Phys, Chernogolovka 142432, Moscow Region, Russia
[3] Univ Alabama, Dept Chem, Tuscaloosa, AL 35487 USA
关键词
polytetrafluoroethylene; molecular-topologic structure; laser ablation; continuous CO2 laser; DSC; TGA; polymeric target; MOLECULAR-MASS DISTRIBUTION; THERMOMECHANICAL PROPERTIES; LASER DEPOSITION; RADIATION; TEMPERATURE;
D O I
10.1007/s10946-015-9527-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We study experimentally the effect of pre-heating polytetrafluoroethylene (PTFE) on its laser ablation rate from a continuous wave CO2 laser. The ablation rate and the fraction of fiber formed grow significantly as the initial temperature of the polymeric target increases from 292 to 683 K. The ablation rate obeys two exponential dependences on the temperature with different apparent activation energies for the high-temperature and low-temperature regimes. We find that a crossover temperature of 460 K correlates best with the temperature for sol-gel transformation in the bulk. The faster rates at higher temperature are due to the ability of the reactive species generated in the ablation process to react with more of the system.
引用
收藏
页码:485 / 494
页数:10
相关论文
共 50 条
  • [21] CO2 laser ablation of oral leukoplakia: with or without extension of margins?
    Romeo, U.
    Mohsen, M.
    Palaia, G.
    Bellisario, A.
    Del Vecchio, A.
    Tenore, G.
    CLINICA TERAPEUTICA, 2020, 171 (03): : E209 - E215
  • [22] CO2 Laser Ablation Propulsion Area Scaling With Polyoxymethylene Propellant
    Sinko, John E.
    Ichihashi, Katsuhiro
    Tsukiyama, Yosuke
    Ogita, Naoya
    Sakai, Takeharu
    Umehara, Noritsugu
    Sasoh, Akihiro
    BEAMED ENERGY PROPULSION, 2010, 1230 : 207 - +
  • [23] An analysis of force generation in TEA CO2 laser ablation of liquids
    Sinko, John
    Kodgis, Lisa
    Porter, Simon
    Lin, Jun
    Pakhomov, Andrew V.
    Larson, C. William
    Mead, Franklin B., Jr.
    HIGH-POWER LASER ABLATION VI, PTS 1 AND 2, 2006, 6261
  • [24] CO2 laser ablation of bent optical fibers for sensing applications
    Levesque, L.
    Jdanov, V.
    JOURNAL OF OPTICS, 2011, 13 (01)
  • [25] Effect of Gamma-Ray Pre-Irradiation on the Ablation of Polyethylene and Ethylene-Propylene Copolymer Under Continuous CO2 Laser Radiation
    S. R. Allayarov
    E. M. Tolstopyatov
    D. A. Dixon
    L. A. Kalinin
    P. N. Grakovich
    L. F. Ivanov
    G. P. Belov
    O. N. Golodkov
    Journal of Russian Laser Research, 2017, 38 : 369 - 374
  • [26] Micromachining by CO2 laser ablation: Building blocks for a multiport integrated device
    Vazquez, G. V.
    Harhira, A.
    Kashyap, R.
    Bosisio, R. G.
    OPTICS COMMUNICATIONS, 2010, 283 (14) : 2824 - 2828
  • [27] Modeling CO2 laser ablation impulse of polymers in vapor and plasma regimes
    Sinko, John E.
    Phipps, Claude R.
    APPLIED PHYSICS LETTERS, 2009, 95 (13)
  • [28] Dependence of ablation depth on angle of incidence for hard tissue ablation using pulsed CO2 laser
    Zhang, Yaokun
    Burgner, Jessica
    Raczkowsky, Joerg
    Woern, Heinz
    MEDICAL LASER APPLICATIONS AND LASER-TISSUE INTERACTIONS V, 2011, 8092
  • [29] Vitro ablation of temporal bone tissue of porcine with pulsed CO2 laser
    Zhan, Zhen-Lin
    Zhang, Xian-Zeng
    Ye, Qing
    Xie, Shu-Sen
    Guangdianzi Jiguang/Journal of Optoelectronics Laser, 2007, 18 (04): : 504 - 507
  • [30] Multi-criteria optimization in CO2 laser ablation of multimode polymer waveguides
    Tamrin, K. F.
    Zakariyah, S. S.
    Sheikh, N. A.
    OPTICS AND LASERS IN ENGINEERING, 2015, 75 : 48 - 56