Quantum Fun: the q=1 limit of Galois field quantum mechanics, projective geometry and the field with one element

被引:6
作者
Chang, Lay Nam [1 ]
Lewis, Zachary [1 ]
Minic, Djordje [1 ]
Takeuchi, Tatsu [1 ,2 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
关键词
field with one element; quantum mechanics; classical mechanics; projective geometry; Galois field; QUASI-CLASSICAL THEORY; SUGGESTED INTERPRETATION; SYSTEMS; DECOHERENCE; FORMULATION; TERMS;
D O I
10.1088/1751-8113/47/40/405304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that the q = 1 limit of Galois field quantum mechanics, which was constructed on a vector space over the Galois field F-q = GF(q), corresponds to its 'classical limit', where superposition of states is disallowed. The limit preserves the projective geometry nature of the state space, and can be understood as being constructed on an appropriately defined analogue of a 'vector' space over the 'field with one element' F-1.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Quantum spin-1 anisotropic ferromagnetic Heisenberg model in a crystal field: A variational approach
    Carvalho, D. C.
    Plascak, J. A.
    Castro, L. M.
    PHYSICAL REVIEW E, 2013, 88 (03):
  • [42] Quantum-coherence-assisted dynamical phase transition in the one-dimensional transverse-field Ising model
    Xu, Bao-Ming
    COMMUNICATIONS IN THEORETICAL PHYSICS, 2024, 76 (12)
  • [43] Quantum-critical properties of the one- and two-dimensional random transverse-field Ising model from large-scale quantum Monte Carlo simulations
    Kraemer, Calvin
    Koziol, Jan Alexander
    Langheld, Anja
    Hoermann, Max
    Schmidt, Kai Phillip
    SCIPOST PHYSICS, 2024, 17 (02):
  • [44] The electronic properties of a coaxial square GaAs/AlxGa1-xAs quantum well wire in an electric field
    Aktas, S.
    Boz, F. K.
    Bilekkaya, A.
    Okan, S. E.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2009, 41 (08) : 1572 - 1576
  • [45] Temperature-field phase diagrams of one-way quantum work deficit in two-qubit XXZ spin systems
    Yurischev, M. A.
    QUANTUM INFORMATION PROCESSING, 2020, 19 (04)
  • [46] A quantum field-theoretical perspective on scale anomalies in 1D systems with three-body interactions
    Daza, W. S.
    Drut, J. E.
    Lin, C. L.
    Ordonez, C. R.
    MODERN PHYSICS LETTERS A, 2019, 34 (35)
  • [47] Field-Induced Quantum Criticality and Universal Temperature Dependence of the Magnetization of a Spin-1/2 Heisenberg Chain
    Kono, Y.
    Sakakibara, T.
    Aoyama, C. P.
    Hotta, C.
    Turnbull, M. M.
    Landee, C. P.
    Takano, Y.
    PHYSICAL REVIEW LETTERS, 2015, 114 (03)
  • [48] Mott quantum criticality in the one-band Hubbard model: Dynamical mean-field theory, power-law spectra, and scaling
    Eisenlohr, Heike
    Lee, Seung-Sup B.
    Vojta, Matthias
    PHYSICAL REVIEW B, 2019, 100 (15)
  • [49] First- and second-order quantum phase transitions in the one-dimensional transverse-field Ising model with boundary fields
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 103 (02)
  • [50] Optical Properties of Gaas/Alxga1-Xas Superlattice Under E-Field for Quantum Cascade Laser Application
    Alaydin, Behcet Ozgur
    GAZI UNIVERSITY JOURNAL OF SCIENCE, 2021, 34 (04): : 1179 - 1191