Quantum Fun: the q=1 limit of Galois field quantum mechanics, projective geometry and the field with one element

被引:6
作者
Chang, Lay Nam [1 ]
Lewis, Zachary [1 ]
Minic, Djordje [1 ]
Takeuchi, Tatsu [1 ,2 ]
机构
[1] Virginia Tech, Dept Phys, Blacksburg, VA 24061 USA
[2] Univ Tokyo, Kavli Inst Phys & Math Universe WPI, Kashiwa, Chiba 2778583, Japan
关键词
field with one element; quantum mechanics; classical mechanics; projective geometry; Galois field; QUASI-CLASSICAL THEORY; SUGGESTED INTERPRETATION; SYSTEMS; DECOHERENCE; FORMULATION; TERMS;
D O I
10.1088/1751-8113/47/40/405304
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We argue that the q = 1 limit of Galois field quantum mechanics, which was constructed on a vector space over the Galois field F-q = GF(q), corresponds to its 'classical limit', where superposition of states is disallowed. The limit preserves the projective geometry nature of the state space, and can be understood as being constructed on an appropriately defined analogue of a 'vector' space over the 'field with one element' F-1.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Fractional quantum Hall effect in a U(1)xSU(2) gauge field
    Palmer, Rebecca N.
    Pachos, Jiannis K.
    NEW JOURNAL OF PHYSICS, 2011, 13
  • [32] Quantum wetting transition in the one-dimensional transverse-field Ising model with random bonds
    Hu, Kun
    Wu, Xintian
    PHYSICAL REVIEW B, 2021, 104 (13)
  • [33] ONE-DIMENSIONAL QUANTUM TRANSVERSE-FIELD ISING MODEL: A SEMICLASSICAL TRANSFER MATRIX APPROACH
    Kaya, Tuncer
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2010, 24 (27): : 5457 - 5468
  • [34] Probability interpretations of quantum mechanics and the prediction of anomalous magnetic moment assuming an energy field existing around rigid bodies
    Misra, P. K.
    PHYSICS ESSAYS, 2011, 24 (01) : 28 - 31
  • [35] Field-Induced Quantum Criticality of a Spin-1/2 Planar Ferromagnet
    Mercaldo, M. T.
    Rabuffo, I.
    D'Auria, A. Caramico
    De Cesare, L.
    25TH INTERNATIONAL CONFERENCE ON LOW TEMPERATURE PHYSICS (LT25), PART 4: QUANTUM PHASE TRANSITIONS AND MAGNETISM, 2009, 150
  • [36] Quantum phase near the saturation field in the S=1/2 frustrated spin ladder
    Yamaguchi, H.
    Miyagai, H.
    Kono, Y.
    Kittaka, S.
    Sakakibara, T.
    Iwase, K.
    Ono, T.
    Shimokawa, T.
    Hosokoshi, Y.
    PHYSICAL REVIEW B, 2015, 91 (12):
  • [37] Secure IoT transmission in 6G smart cities: a quantum-resilient hybrid Galois field and Reed-Solomon approach
    Alyami, Raneem Y.
    JOURNAL OF SUPERCOMPUTING, 2025, 81 (04)
  • [38] First-Principles Simulations of 1+1D Quantum Field Theories at θ = π and Spin Chains
    Sulejmanpasic, Tin
    Goeschl, Daniel
    Gattringer, Christof
    PHYSICAL REVIEW LETTERS, 2020, 125 (20)
  • [39] Hybrid Dynamic Galois Field with Quantum Resilience for Secure IoT Data Management and Transmission in Smart Cities Using Reed-Solomon (RS) Code
    Aljuhni, Abdullah
    Aljaedi, Amer
    Alharbi, Adel R.
    Mubaraki, Ahmed
    Alghuson, Moahd K.
    SYMMETRY-BASEL, 2025, 17 (02):
  • [40] Magnetic-field-induced Quantum Phase in S=1/2 Frustrated Trellis Lattice
    Yamaguchi, Hironori
    Yoshizawa, Daichi
    Kida, Takanori
    Hagiwara, Masayuki
    Matsuo, Akira
    Kono, Yohei
    Sakakibara, Toshiro
    Tamekuni, Yusuke
    Miyagai, Hirotsugu
    Hosokoshi, Yuko
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2018, 87 (04)