Mathematical analysis of a tuberculosis model with differential infectivity

被引:40
|
作者
Bowong, Samuel [1 ]
Tewa, Jean Jules [2 ]
机构
[1] Univ Douala, Fac Sci, Dept Math & Comp Sci, Lab Appl Math, Douala, Cameroon
[2] Univ Yaounde I, Dept Math & Phys, Natl High Sch Polytech, Yaounde, Cameroon
关键词
Lyapunov functions; Stability; Epidemiological models; Tuberculosis; LYAPUNOV FUNCTIONS; STABILITY ANALYSIS; GLOBAL PROPERTIES; SYSTEMS; DYNAMICS; SEIR;
D O I
10.1016/j.cnsns.2009.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global properties of a tuberculosis model with mass action incidence and two differential infectivity. The direct Lyapunov method enables us to prove that the considered model is globally stable: There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction number R-0, this state can be either endemic (R-0 > 1), or infection-free (R-0 <= 1). Numerical results are provided to illustrate analytical results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4010 / 4021
页数:12
相关论文
共 50 条
  • [21] Mathematical analysis of a two-patch model of tuberculosis disease with staged progression
    Tewa, Jean Jules
    Bowong, Samuel
    Noutchie, S. C. Oukouomi
    APPLIED MATHEMATICAL MODELLING, 2012, 36 (12) : 5792 - 5807
  • [22] MATHEMATICAL MODEL FOR THE GROWTH OF MYCOBACTERIUM TUBERCULOSIS IN THE GRANULOMA
    Ibarguen-Mondragon, Eduardo
    Esteva, Lourdes
    Mariela Burbano-Rosero, Edith
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2018, 15 (02) : 407 - 428
  • [23] Global dynamics of cholera models with differential infectivity
    Shuai, Zhisheng
    van den Driessche, P.
    MATHEMATICAL BIOSCIENCES, 2011, 234 (02) : 118 - 126
  • [24] Boundedness and Stability Properties of Solutions of Mathematical Model of Measles
    Akingbade, James Akinsuyi
    Ogundare, Babatunde Sunday
    TAMKANG JOURNAL OF MATHEMATICS, 2021, 52 (01): : 91 - 112
  • [25] Mathematical analysis of a three-strain tuberculosis transmission model
    Bhunu, C. P.
    APPLIED MATHEMATICAL MODELLING, 2011, 35 (09) : 4647 - 4660
  • [26] A Mathematical Model of the Tuberculosis Epidemic
    Ayinla, Ally Yeketi
    Othman, Wan Ainun Mior
    Rabiu, Musa
    ACTA BIOTHEORETICA, 2021, 69 (03) : 225 - 255
  • [27] A Mathematical Model of the Tuberculosis Epidemic
    Ally Yeketi Ayinla
    Wan Ainun Mior Othman
    Musa Rabiu
    Acta Biotheoretica, 2021, 69 : 225 - 255
  • [28] THE MATHEMATICAL MODELING AND ANALYSIS OF THE CHOLERA DISEASE MODEL
    Sahib, Issam
    Baroudi, Mohamed
    Gourram, Hicham
    Khajji, Bouchaib
    Labzai, Abderrahim
    Belam, Mohamed
    COMMUNICATIONS IN MATHEMATICAL BIOLOGY AND NEUROSCIENCE, 2024,
  • [29] Mathematical model for the analysis of co-infection of tuberculosis and scrub typhus
    Chauhan, Komal
    Jasrotia, Shubham
    Kumar, Rakesh
    MODELING EARTH SYSTEMS AND ENVIRONMENT, 2025, 11 (02)
  • [30] Analysis and simulation of a mathematical model of tuberculosis transmission in Democratic Republic of the Congo
    Selain Kasereka Kabunga
    Emile F. Doungmo Goufo
    Vinh Ho Tuong
    Advances in Difference Equations, 2020