Mathematical analysis of a tuberculosis model with differential infectivity

被引:40
|
作者
Bowong, Samuel [1 ]
Tewa, Jean Jules [2 ]
机构
[1] Univ Douala, Fac Sci, Dept Math & Comp Sci, Lab Appl Math, Douala, Cameroon
[2] Univ Yaounde I, Dept Math & Phys, Natl High Sch Polytech, Yaounde, Cameroon
关键词
Lyapunov functions; Stability; Epidemiological models; Tuberculosis; LYAPUNOV FUNCTIONS; STABILITY ANALYSIS; GLOBAL PROPERTIES; SYSTEMS; DYNAMICS; SEIR;
D O I
10.1016/j.cnsns.2009.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global properties of a tuberculosis model with mass action incidence and two differential infectivity. The direct Lyapunov method enables us to prove that the considered model is globally stable: There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction number R-0, this state can be either endemic (R-0 > 1), or infection-free (R-0 <= 1). Numerical results are provided to illustrate analytical results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4010 / 4021
页数:12
相关论文
共 50 条
  • [11] Analysis of Mathematical Model of Diabetes and Tuberculosis Co-infection
    Agwu C.O.
    Omame A.
    Inyama S.C.
    International Journal of Applied and Computational Mathematics, 2023, 9 (3)
  • [12] ANALYSIS OF A FRACTIONAL ORDER MATHEMATICAL MODEL FOR TUBERCULOSIS WITH OPTIMAL CONTROL
    Shi, Ruiqing
    Ren, Jianing
    Wang, Cuihong
    JOURNAL OF NONLINEAR FUNCTIONAL ANALYSIS, 2020, 2020
  • [13] Analysis and simulation of a mathematical model of tuberculosis transmission in Democratic Republic of the Congo
    Kabunga, Selain Kasereka
    Goufo, Emile F. Doungmo
    Vinh Ho Tuong
    ADVANCES IN DIFFERENCE EQUATIONS, 2020, 2020 (01)
  • [14] Mathematical analysis of a new nonlinear dengue epidemic model via deterministic and fractional approach
    Gu, Yu
    Khan, Mohabat
    Zarin, Rahat
    Khan, Amir
    Yusuf, Abdullahi
    Humphries, Usa Wannasingha
    ALEXANDRIA ENGINEERING JOURNAL, 2023, 67 : 1 - 21
  • [15] A MATHEMATICAL MODEL FOR CELLULAR IMMUNOLOGY OF TUBERCULOSIS
    Ibarguen-Mondragon, Eduardo
    Esteva, Lourdes
    Chavez-Galan, Leslie
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2011, 8 (04) : 973 - 986
  • [16] Characterization of differential susceptibility and differential infectivity epidemic models
    Bichara, Derdei M.
    JOURNAL OF MATHEMATICAL BIOLOGY, 2024, 88 (01)
  • [17] Analysis and numerical simulation of tuberculosis model using different
    Zafar, Zain Ul Abadin
    Zaib, Sumera
    Hussain, Muhammad Tanveer
    Tunc, Cemil
    Javeed, Shumaila
    CHAOS SOLITONS & FRACTALS, 2022, 160
  • [18] AN SIRS MODEL WITH DIFFERENTIAL SUSCEPTIBILITY AND INFECTIVITY ON UNCORRELATED NETWORKS
    Liu, Maoxing
    Chen, Yuming
    MATHEMATICAL BIOSCIENCES AND ENGINEERING, 2015, 12 (03) : 415 - 429
  • [19] Mathematical analysis of a model for the transmission dynamics of bovine tuberculosis
    Agusto, Folashade B.
    Lenhart, Suzanne
    Gumel, Abba B.
    Odoi, Agricola
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2011, 34 (15) : 1873 - 1887
  • [20] Analysis of a stochastic mathematical model for tuberculosis with case detection
    D. Okuonghae
    International Journal of Dynamics and Control, 2022, 10 : 734 - 747