Mathematical analysis of a tuberculosis model with differential infectivity

被引:40
作者
Bowong, Samuel [1 ]
Tewa, Jean Jules [2 ]
机构
[1] Univ Douala, Fac Sci, Dept Math & Comp Sci, Lab Appl Math, Douala, Cameroon
[2] Univ Yaounde I, Dept Math & Phys, Natl High Sch Polytech, Yaounde, Cameroon
关键词
Lyapunov functions; Stability; Epidemiological models; Tuberculosis; LYAPUNOV FUNCTIONS; STABILITY ANALYSIS; GLOBAL PROPERTIES; SYSTEMS; DYNAMICS; SEIR;
D O I
10.1016/j.cnsns.2009.02.017
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the global properties of a tuberculosis model with mass action incidence and two differential infectivity. The direct Lyapunov method enables us to prove that the considered model is globally stable: There is always a globally asymptotically stable equilibrium state. Depending on the value of the basic reproduction number R-0, this state can be either endemic (R-0 > 1), or infection-free (R-0 <= 1). Numerical results are provided to illustrate analytical results. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:4010 / 4021
页数:12
相关论文
共 33 条
[1]  
Adda P, 2007, DISCRETE CONT DYN-B, V8, P1
[2]  
[Anonymous], 1970, Classics in Mathematics
[3]  
[Anonymous], 1979, Introduction to dynamic systems: theory, models, and applica-tions
[4]  
Bame N, 2008, MATH BIOSCI ENG, V5, P20
[5]   ON THE GENERAL STRUCTURE OF EPIDEMIC SYSTEMS - GLOBAL ASYMPTOTIC STABILITY [J].
BERETTA, E ;
CAPASSO, V .
COMPUTERS & MATHEMATICS WITH APPLICATIONS-PART A, 1986, 12 (06) :677-694
[6]   GLOBAL ASYMPTOTIC STABILITY OF LOTKA-VOLTERRA DIFFUSION-MODELS WITH CONTINUOUS-TIME DELAY [J].
BERETTA, E ;
TAKEUCHI, Y .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1988, 48 (03) :627-651
[7]  
Bermudez A. J., 1994, SAVMA Symposium 1994 Proceedings., P1
[8]  
BLOWER S, 1996, J THEO BIOL, V206, P327
[9]   Control strategies for tuberculosis epidemics: New models for old problems [J].
Blower, SM ;
Small, PM ;
Hopewell, PC .
SCIENCE, 1996, 273 (5274) :497-500
[10]   To treat or not to treat: The case of tuberculosis [J].
CastilloChavez, C ;
Feng, ZL .
JOURNAL OF MATHEMATICAL BIOLOGY, 1997, 35 (06) :629-656