On the existence of radially symmetric blow-up solutions for the Keller-Segel model

被引:47
作者
Horstmann, D [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
chemotaxis; Keller; Segel model; blow-up; Lyapunov functional; nonlocal nonlinear elliptic boundary value problems; Neumann problem;
D O I
10.1007/s002850100134
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the existence of radially symmetric solutions of the Keller-Segal model A(t) = del . (delA - AdelC), x is an element of Omega, t > 0 C-t = k(c)DeltaC - gammaC + alphachi(A - 1), x is an element of Omega, t > 0 partial derivativeA/partial derivativen = partial derivativeC/partial derivativen = 0, x is an element of partial derivativeOmega, t > 0 A(0, x) = A(0)(x) > 0, C(0, x) = C-0(x), x is an element of Omega, which blow up in finite or infinite time, i.e. lim(t --> Tmax) sup parallel toA(t, .)parallel to(Linfinity(Omega)) = infinity or lim(t --> Tmax) sup parallel toC(+)(t, .)parallel to(Linfinity(Omega)) = infinity for T-max less than or equal to infinity, under a larger class of initial data than in [10] and [11].
引用
收藏
页码:463 / 478
页数:16
相关论文
共 29 条
[1]  
Bonner J. T., 1967, CELLULAR SLIME MOLDS
[2]   UNIFORM ESTIMATES AND BLOW UP BEHAVIOR FOR SOLUTIONS OF -DELTA-U = V(X)EU IN 2 DIMENSIONS [J].
BREZIS, H ;
MERLE, F .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1991, 16 (8-9) :1223-1253
[3]   SELECTIVE PROCESSING OF FOOD WORDS IN ANOREXIA-NERVOSA [J].
CHANNON, S ;
HEMSLEY, D ;
DESILVA, P .
BRITISH JOURNAL OF CLINICAL PSYCHOLOGY, 1988, 27 :259-260
[4]   CLASSIFICATION OF SOLUTIONS OF SOME NONLINEAR ELLIPTIC-EQUATIONS [J].
CHEN, WX ;
LI, CM .
DUKE MATHEMATICAL JOURNAL, 1991, 63 (03) :615-622
[5]   NON-LINEAR ASPECTS OF CHEMOTAXIS [J].
CHILDRESS, S ;
PERCUS, JK .
MATHEMATICAL BIOSCIENCES, 1981, 56 (3-4) :217-237
[6]  
Childress S., 1984, Modelling of Patterns in Space and Time, P61
[7]   WAVE PROPAGATION IN EARLY STAGES OF AGGREGATION OF CELLULAR SLIME MOLDS [J].
COHEN, MH ;
ROBERTSON, A .
JOURNAL OF THEORETICAL BIOLOGY, 1971, 31 (01) :101-+
[8]   Global behaviour of a reaction-diffusion system modelling chemotaxis [J].
Gajewski, H ;
Zacharias, K .
MATHEMATISCHE NACHRICHTEN, 1998, 195 :77-114
[9]  
Herrero M. A., 1998, Ann. Scuola Norm. Sup. Pisa Cl. Sci., V24, P633
[10]   Singularity patterns in a chemotaxis model [J].
Herrero, MA ;
Velazquez, JJL .
MATHEMATISCHE ANNALEN, 1996, 306 (03) :583-623