On the existence of radially symmetric blow-up solutions for the Keller-Segel model

被引:46
|
作者
Horstmann, D [1 ]
机构
[1] Univ Cologne, Inst Math, D-50931 Cologne, Germany
关键词
chemotaxis; Keller; Segel model; blow-up; Lyapunov functional; nonlocal nonlinear elliptic boundary value problems; Neumann problem;
D O I
10.1007/s002850100134
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We investigate the existence of radially symmetric solutions of the Keller-Segal model A(t) = del . (delA - AdelC), x is an element of Omega, t > 0 C-t = k(c)DeltaC - gammaC + alphachi(A - 1), x is an element of Omega, t > 0 partial derivativeA/partial derivativen = partial derivativeC/partial derivativen = 0, x is an element of partial derivativeOmega, t > 0 A(0, x) = A(0)(x) > 0, C(0, x) = C-0(x), x is an element of Omega, which blow up in finite or infinite time, i.e. lim(t --> Tmax) sup parallel toA(t, .)parallel to(Linfinity(Omega)) = infinity or lim(t --> Tmax) sup parallel toC(+)(t, .)parallel to(Linfinity(Omega)) = infinity for T-max less than or equal to infinity, under a larger class of initial data than in [10] and [11].
引用
收藏
页码:463 / 478
页数:16
相关论文
共 50 条
  • [1] Blow-up, Concentration Phenomenon and Global Existence for the Keller-Segel Model in High Dimension
    Calvez, Vincent
    Corrias, Lucilla
    Ebde, Mohamed Abderrahman
    COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2012, 37 (04) : 561 - 584
  • [2] Blow-up of solutions to the Keller-Segel model with tensorial flux in high dimensions
    Cuentas, Valeria
    Espejo, Elio
    Suzuki, Takashi
    APPLIED MATHEMATICS LETTERS, 2024, 154
  • [3] THE TWO-DIMENSIONAL KELLER-SEGEL MODEL AFTER BLOW-UP
    Dolbeault, Jean
    Schmeiser, Christian
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 25 (01) : 109 - 121
  • [4] Existence and Stability of Infinite Time Blow-Up in the Keller-Segel System
    Davila, Juan
    del Pino, Manuel
    Dolbeault, Jean
    Musso, Monica
    Wei, Juncheng
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2024, 248 (04)
  • [5] Nondegeneracy of blow-up points for the parabolic Keller-Segel system
    Mizoguchi, Noriko
    Souplet, Philippe
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2014, 31 (04): : 851 - 875
  • [6] Well-posedness and blow-up of the fractional Keller-Segel model on domains
    Costa, Masterson
    Cuevas, Claudio
    Silva, Clessius
    Soto, Herme
    MATHEMATISCHE NACHRICHTEN, 2023, 296 (12) : 5569 - 5592
  • [7] Blow-up for a three dimensional Keller-Segel model with consumption of chemoattractant
    Jiang, Jie
    Wu, Hao
    Zheng, Songmu
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (08) : 5432 - 5464
  • [8] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Hideo Kozono
    Yoshie Sugiyama
    Journal of Evolution Equations, 2008, 8 : 353 - 378
  • [9] Local existence and finite time blow-up of solutions in the 2-D Keller-Segel system
    Kozono, Hideo
    Sugiyama, Yoshie
    JOURNAL OF EVOLUTION EQUATIONS, 2008, 8 (02) : 353 - 378
  • [10] Volume effects in the Keller-Segel model: energy estimates preventing blow-up
    Calvez, Vincent
    Carrillo, Jose A.
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2006, 86 (02): : 155 - 175