DNA-Based Chemical Reaction Networks

被引:11
|
作者
Li, Fan [1 ,2 ]
Xiao, Mingshu [1 ]
Pei, Hao [1 ]
机构
[1] East China Normal Univ, Shanghai Key Lab Green Chem & Chem Proc, Sch Chem & Mol Engn, 500 Dongchuan Rd, Shanghai 200241, Peoples R China
[2] Shenzhen Univ, Guangdong Key Lab Biomed Measurements & Ultrasoun, Lab Evolutionary Theranost, Sch Biomed Engn,Hlth Sci Ctr, Nanhai Ave 3688, Guangzhou 518060, Guangdong, Peoples R China
基金
美国国家科学基金会;
关键词
biotechnology; chemical reaction networks; DNA; DNA recognition; strand-displacement reactions; ROLLING CIRCLE AMPLIFICATION; NUCLEIC-ACID NANOSTRUCTURES; STRAND-DISPLACEMENT; TARGETED TRANSPORT; RATIONAL DESIGN; IN-SITU; COMPUTATION; PLATFORM; CIRCUIT; PRINCIPLES;
D O I
10.1002/cbic.201800721
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Motivated by complex molecular networks of biological organisms, which enable control of the temporal and spatial concentrations of molecules, the bottom-up development of artificial chemical reaction networks has received renewed interest from biochemists. Based on hybridization and strand-displacement reactions, DNA-based chemical reaction networks (D-CRNs) provide a promising method to describe and analyze (bio)chemical systems, depending on their high programmability and directionality. Herein, progress in the development of D-CRNs is discussed, and an overview of significant biochemistry applications based on D-CRNs reported in recent decades is provided. Furthermore, opportunities and future directions for research into D-CRNs in biochemistry are also discussed.
引用
收藏
页码:1105 / 1114
页数:10
相关论文
共 50 条
  • [31] DNA-based phosphane ligands
    Caprioara, Mihaela
    Fiammengo, Roberto
    Engeser, Marianne
    Jaeschke, Andres
    CHEMISTRY-A EUROPEAN JOURNAL, 2007, 13 (07) : 2089 - 2095
  • [32] Plasmid-derived DNA Strand Displacement Gates for Implementing Chemical Reaction Networks
    Chen, Yuan-Jyue
    Rao, Sundipta D.
    Seelig, Georg
    JOVE-JOURNAL OF VISUALIZED EXPERIMENTS, 2015, (105):
  • [33] DNA-based Fluorescent Sensors
    Sou, Nobuaki
    ANALYTICAL SCIENCES, 2018, 34 (05) : 515 - 516
  • [34] DNA-based asymmetric catalysis
    Roelfes, G
    Feringa, BL
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2005, 44 (21) : 3230 - 3232
  • [35] DNA-Based Soft Phases
    Bellini, Tommaso
    Cerbino, Roberto
    Zanchetta, Giuliano
    LIQUID CRYSTALS: MATERIALS DESIGN AND SELF-ASSEMBLY, 2012, 318 : 225 - 279
  • [36] DNA-based Nanomaterials in the Immunotherapy
    Huang, Hongxiao
    Gao, Shaojingya
    Cai, Xiaoxiao
    CURRENT DRUG METABOLISM, 2023, 24 (05) : 367 - 384
  • [37] Antibody Activation using DNA-Based Logic Gates
    Janssen, Brian M. G.
    van Rosmalen, Martijn
    van Beek, Lotte
    Merkx, Maarten
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (08) : 2530 - 2533
  • [38] Towards Personalized Precision Medicine Using DNA-Based Molecular Communication Networks
    Lau, Florian-Lennert Adrian
    Gerlach, Bennet
    Wendt, Regine
    Fischer, Stefan
    PROCEEDINGS OF THE 9TH ACM INTERNATIONAL CONFERENCE ON NANOSCALE COMPUTING AND COMMUNICATION, ACM NANOCOM 2022, 2022,
  • [39] Implementing digital computing with DNA-based switching circuits
    Wang, Fei
    Lv, Hui
    Li, Qian
    Li, Jiang
    Zhang, Xueli
    Shi, Jiye
    Wang, Lihua
    Fan, Chunhai
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [40] DNA-based customized functional modules for signal transformation
    Zhang, Mingzhi
    Sun, Yang
    FRONTIERS IN CHEMISTRY, 2023, 11