A class of time-fractional reaction-diffusion equation with nonlocal boundary condition

被引:72
|
作者
Zhou, Yong [1 ,2 ]
Shangerganesh, L. [3 ]
Manimaran, J. [3 ]
Debbouche, Amar [4 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[3] Natl Inst Technol, Dept Humanities & Sci, Farmagudi 403401, Goa, India
[4] Guelma Univ, Dept Math, Guelma 24000, Algeria
基金
中国国家自然科学基金;
关键词
Faedo-Galerkin method; fractional reaction-diffusion equation; weak solution; EXISTENCE; MODEL; PROPERTY; GROWTH;
D O I
10.1002/mma.4796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the study is to analyze the time-fractional reaction-diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo-Galerkin method and compactness arguments.
引用
收藏
页码:2987 / 2999
页数:13
相关论文
共 50 条