A class of time-fractional reaction-diffusion equation with nonlocal boundary condition

被引:75
作者
Zhou, Yong [1 ,2 ]
Shangerganesh, L. [3 ]
Manimaran, J. [3 ]
Debbouche, Amar [4 ]
机构
[1] Xiangtan Univ, Fac Math & Computat Sci, Xiangtan 411105, Hunan, Peoples R China
[2] King Abdulaziz Univ, Fac Sci, Nonlinear Anal & Appl Math NAAM Res Grp, Jeddah 21589, Saudi Arabia
[3] Natl Inst Technol, Dept Humanities & Sci, Farmagudi 403401, Goa, India
[4] Guelma Univ, Dept Math, Guelma 24000, Algeria
基金
中国国家自然科学基金;
关键词
Faedo-Galerkin method; fractional reaction-diffusion equation; weak solution; EXISTENCE; MODEL; PROPERTY; GROWTH;
D O I
10.1002/mma.4796
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the study is to analyze the time-fractional reaction-diffusion equation with nonlocal boundary condition. The proposed model is used to predict the invasion of tumor and its growth. Further, we establish the existence and uniqueness of a weak solution of the proposed model using the Faedo-Galerkin method and compactness arguments.
引用
收藏
页码:2987 / 2999
页数:13
相关论文
共 35 条
[1]   Fractional variational calculus in terms of Riesz fractional derivatives [J].
Agrawal, O. P. .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6287-6303
[2]   On a time fractional reaction diffusion equation [J].
Ahmad, B. ;
Alhothuali, M. S. ;
Alsulami, H. H. ;
Kirane, M. ;
Timoshin, S. .
APPLIED MATHEMATICS AND COMPUTATION, 2015, 257 :199-204
[3]   A cellular automaton model for tumour growth in inhomogeneous environment [J].
Alarcón, T ;
Byrne, HM ;
Maini, PK .
JOURNAL OF THEORETICAL BIOLOGY, 2003, 225 (02) :257-274
[4]   A priori estimates for solutions of boundary value problems for fractional-order equations [J].
Alikhanov, A. A. .
DIFFERENTIAL EQUATIONS, 2010, 46 (05) :660-666
[5]   A REACTION-DIFFUSION SYSTEM ARISING IN MODELING MAN-ENVIRONMENT DISEASES [J].
CAPASSO, V ;
KUNISCH, K .
QUARTERLY OF APPLIED MATHEMATICS, 1988, 46 (03) :431-450
[6]   A PARABOLIC EQUATION WITH NONLOCAL BOUNDARY-CONDITIONS ARISING FROM ELECTROCHEMISTRY [J].
CHOI, YS ;
CHAN, KY .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1992, 18 (04) :317-331
[7]   Realistic simulation of the 3-D growth of brain tumors in MR images coupling diffusion with biomechanical deformation [J].
Clatz, O ;
Sermesant, M ;
Bondiau, PY ;
Delingette, H ;
Warfield, SK ;
Malandain, G ;
Ayache, N .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2005, 24 (10) :1334-1346
[10]   Stochastic dynamics of hematopoietic tumor stem cells [J].
Dingli, David ;
Traulsen, Arne ;
Pacheco, Jorge M. .
CELL CYCLE, 2007, 6 (04) :461-466