Fast rechargeable all-solid-state lithium ion batteries with high capacity based on nano-sized Li2FeSiO4 cathode by tuning temperature

被引:37
作者
Tan, Rui [1 ]
Yang, Jinlong [1 ]
Zheng, Jiaxin [1 ]
Wang, Kai [1 ]
Lin, Lingpiao [1 ]
Ji, Shunping [1 ]
Liu, Jun [2 ]
Pan, Feng [1 ]
机构
[1] Peking Univ, Shenzhen Grad Sch, Sch Adv Mat, Shenzhen 518055, Peoples R China
[2] Pacific NW Natl Lab, Richland, WA 99352 USA
关键词
Nano-sized Li2FeSiO4; All-solid-state lithium ion batteries; High capacity and fast recharge; TOTAL-ENERGY CALCULATIONS; POLYMER ELECTROLYTE; CONDUCTIVITY; COMPOSITE;
D O I
10.1016/j.nanoen.2015.06.016
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report all-solid-state lithium ion batteries based on nano-sized Li2FeSiO4 coated by carbon cathode materials with fast rechargeable (67.5 mA h g(-1) at 30 C) and high capacity (258.2 mA h g(-1) with 1.55 Li-ion storage at 1 C within 1.5-4.5 V) performances for the first time. By investigating and comparing with Li2FeSiO4, LiFePO4 and LiNi0.5Co0.2Mn0.3O2 cathode materials for all-solid-state lithium ion batteries, the mechanism of the higher rate performance of the Li2FeSiO4 based battery is found to be attributed to the high temperature depended diffusivity and electrical conductivity, which are increased by nearly four orders of magnitude from 300 K to 373 K, and also to permeation of the cathode/electrolyte solid-solid interface to generate the overlapping between Li2FeSiO4 particles and electrolyte. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:112 / 121
页数:10
相关论文
共 38 条
[1]   BAND THEORY AND MOTT INSULATORS - HUBBARD-U INSTEAD OF STONER-I [J].
ANISIMOV, VI ;
ZAANEN, J ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1991, 44 (03) :943-954
[2]   Structure and Lithium Transport Pathways in Li2FeSiO4 Cathodes for Lithium Batteries [J].
Armstrong, A. Robert ;
Kuganathan, Navaratnarajah ;
Islam, M. Saiful ;
Bruce, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (33) :13031-13035
[3]   Electronically conductive phospho-olivines as lithium storage electrodes [J].
Chung, SY ;
Bloking, JT ;
Chiang, YM .
NATURE MATERIALS, 2002, 1 (02) :123-128
[4]   Change of conductivity with salt content, solvent composition, and temperature for electrolytes of LiPF6 in ethylene carbonate-ethyl methyl carbonate [J].
Ding, MS ;
Xu, K ;
Zhang, SS ;
Amine, K ;
Henriksen, GL ;
Jow, TR .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2001, 148 (10) :A1196-A1204
[5]   Influence of Fe2O3 Nanofiller Shape on the Conductivity and Thermal Properties of Solid Polymer Electrolytes: Nanorods versus Nanospheres [J].
Do, Nhu Suong T. ;
Schaetzl, Dean M. ;
Dey, Barnali ;
Seabaugh, Alan C. ;
Fullerton-Shirey, Susan K. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (40) :21216-21223
[6]   COMPLEXES OF ALKALI-METAL IONS WITH POLY(ETHYLENE OXIDE) [J].
FENTON, DE ;
PARKER, JM ;
WRIGHT, PV .
POLYMER, 1973, 14 (11) :589-589
[7]   PEO based polymer electrolyte lithium-ion battery [J].
Fiory, FS ;
Croce, F ;
D'Epifanio, A ;
Licoccia, S ;
Scrosati, B ;
Traversa, E .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2004, 24 (06) :1385-1387
[8]   Ionic conductivity in crystalline polymer electrolytes [J].
Gadjourova, Z ;
Andreev, YG ;
Tunstall, DP ;
Bruce, PG .
NATURE, 2001, 412 (6846) :520-523
[9]   Recent advances in the research of polyanion-type cathode materials for Li-ion batteries [J].
Gong, Zhengliang ;
Yang, Yong .
ENERGY & ENVIRONMENTAL SCIENCE, 2011, 4 (09) :3223-3242
[10]   A climbing image nudged elastic band method for finding saddle points and minimum energy paths [J].
Henkelman, G ;
Uberuaga, BP ;
Jónsson, H .
JOURNAL OF CHEMICAL PHYSICS, 2000, 113 (22) :9901-9904