Short Term Blood Glucose Prediction based on Continuous Glucose Monitoring Data

被引:0
作者
Mohebbi, Ali [1 ,2 ,3 ]
Johansen, Alexander R. [1 ]
Hansen, Nicklas [1 ]
Christensen, Peter E. [1 ]
Tarp, Jens M. [4 ]
Jensen, Morten L. [3 ]
Bengtsson, Henrik [2 ]
Morup, Morten [1 ]
机构
[1] Tech Univ Denmark DTU, Dept Appl Math & Comp Sci, Cognit Syst, Copenhagen, Denmark
[2] Novo Nordisk, Device R&D, Hillerod, Denmark
[3] Novo Nordisk AS, Med & Sci, Soborg, Denmark
[4] Novo Nordisk AS, Data Analyt, Soborg, Denmark
来源
42ND ANNUAL INTERNATIONAL CONFERENCES OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY: ENABLING INNOVATIVE TECHNOLOGIES FOR GLOBAL HEALTHCARE EMBC'20 | 2020年
关键词
D O I
暂无
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Continuous Glucose Monitoring (CGM) has enabled important opportunities for diabetes management. This study explores the use of CGM data as input for digital decision support tools. We investigate how Recurrent Neural Networks (RNNs) can be used for Short Term Blood Glucose (STBG) prediction and compare the RNNs to conventional time-series forecasting using Autoregressive Integrated Moving Average (ARIMA). A prediction horizon up to 90 min into the future is considered. In this context, we evaluate both population-based and patient-specific RNNs and contrast them to patient-specific ARIMA models and a simple baseline predicting future observations as the last observed. We find that the population-based RNN model is the best performing model across the considered prediction horizons without the need of patient-specific data. This demonstrates the potential of RNNs for STBG prediction in diabetes patients towards detecting/mitigating severe events in the STBG, in particular hypoglycemic events. However, further studies are needed in regards to the robustness and practical use of the investigated STBG prediction models.
引用
收藏
页码:5140 / 5145
页数:6
相关论文
共 18 条
  • [1] [Anonymous], 2013, PREPRINT ARXIV 1308
  • [2] Clinical Targets for Continuous Glucose Monitoring Data Interpretation: Recommendations From the International Consensus on Time in Range
    Battelino, Tadej
    Danne, Thomas
    Bergenstal, Richard M.
    Amiel, Stephanie A.
    Beck, Roy
    Biester, Torben
    Bosi, Emanuele
    Buckingham, Bruce A.
    Cefalu, William T.
    Close, Kelly L.
    Cobelli, Claudio
    Dassau, Eyal
    DeVries, J. Hans
    Donaghue, Kim C.
    Dovc, Klemen
    Doyle, Francis J.
    Garg, Satish
    Grunberger, George
    Heller, Simon
    Heinemann, Lutz
    Hirsch, Irl B.
    Hovorka, Roman
    Jia, Weiping
    Kordonouri, Olga
    Kovatchev, Boris
    Kowalski, Aaron
    Laffel, Lori
    Levine, Brian
    Mayorov, Alexander
    Mathieu, Chantal
    Murphy, Helen R.
    Nimri, Revital
    Norgaard, Kirsten
    Parkin, Christopher G.
    Renard, Eric
    Rodbard, David
    Saboo, Banshi
    Schatz, Desmond
    Stoner, Keaton
    Urakami, Tatsuiko
    Weinzimer, Stuart A.
    Phillip, Moshe
    [J]. DIABETES CARE, 2019, 42 (08) : 1593 - 1603
  • [3] Dewancker I., 2015, Bayesian optimization primer
  • [4] Fiorini S, 2017, IEEE ENG MED BIO, P1680, DOI 10.1109/EMBC.2017.8037164
  • [5] TIME-SERIES ANALYSIS - FORECASTING AND CONTROL - BOX,GEP AND JENKINS,GM
    GEURTS, M
    [J]. JOURNAL OF MARKETING RESEARCH, 1977, 14 (02) : 269 - 269
  • [6] Glorot X., 2011, INT C ARTIF INTELLIG, P315
  • [7] A Review of Technology-Assisted Interventions for Diabetes Prevention
    Grock, Shira
    Ku, Jeong-hee
    Kim, Julie
    Moin, Tannaz
    [J]. CURRENT DIABETES REPORTS, 2017, 17 (11)
  • [8] Hochreiter Sepp, 1997, Neural Comput., V9, P1735
  • [9] Li K., 2019, IEEE J BIOMEDICAL HL
  • [10] Liu L., 2019, ARXIV190803265