Thermal effect on polyethyleneoxide-containing copolyimide membranes for CO2/N2 separation

被引:23
|
作者
Maya, Eva M. [1 ]
Munoz, Dulce M. [1 ]
de la Campa, Jose G. [1 ]
de Abajo, Javier [1 ]
Lozano, Angel E. [1 ]
机构
[1] CSIC, Inst Ciencia & Tecnol Polimeros, Dpto Quim Macromol, E-28006 Madrid, Spain
关键词
polyimides; polyethyleneoxide; membrane; gas separation; thermal treatment;
D O I
10.1016/j.desal.2006.03.042
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Recovery of CO2 from gas mixtures is an important industrial objective in view of several aspects such as natural gas reforming, biomedical applications and even global warming. Polyimides consisting of flexible polyethyleneoxide (PEO) segments and rigid polyimide segments have been reported in recent years for this application. They exhibit high CO2 permeability coefficients and relatively high CO2/N-2 selectivity due to CO2 strong affinity to the polar PEO segments. In this work a set of copolyimides with different contents of PEO have been prepared from 3,3',4,4'-biphenyltetracarboxylic dianhydride, oxydianiline (ODA) and a diamine containing the PEO fragment. ODA-PEO ratios (w:w) used to prepare the polymers were 1: 1, 1:2, 1:4 and 1:6. Preliminary permeability measurements established that the membrane with the ODA-PEO ratio (w:w) 1:2, which exhibited permeabilities of 23.87 and 0.39 Barrers, for CO2 and N-2 respectively, showed the highest ideal selectivity of CO2 over N-2 (61.20) when compared to the other members of the series. The thermal treatment of this membrane was carried out in an oven heated at 200 degrees C, 250 degrees C and 300 degrees C. The heating at 200 degrees C caused a large increase in N2 and CO2 permeability coefficients (1.05 and 57.25 Barrers respectively) which resulted in a slight decrease of the selectivity. It should be mentioned that while the permeability of CO2 increased considerably (similar to 300%), the selectivity just suffered a small drop (similar to 10%), and hence, the productivity of this membrane is much better after the thermal treatment. Thermal treatment of the membrane above 200 degrees C produced successive increments on the permeability coefficients of both gases, while ideal selectivity was maintained.
引用
收藏
页码:188 / 190
页数:3
相关论文
共 50 条
  • [1] Permselectivity improvement in membranes for CO2/N2 separation
    Fernandez-Barquin, Ana
    Casado-Coterillo, Clara
    Palomino, Miguel
    Valencia, Susana
    Irabien, Angel
    SEPARATION AND PURIFICATION TECHNOLOGY, 2016, 157 : 102 - 111
  • [2] CO2-selective membranes containing amino acid salts for CO2/ N2 separation
    Zhang, Zhien
    Rao, Shraavya
    Han, Yang
    Pang, Ruizhi
    Ho, W. S. Winston
    JOURNAL OF MEMBRANE SCIENCE, 2021, 638
  • [3] Novel mixed matrix membranes containing calixarene for enhanced CO2/ N2 separation
    Zhang, Shumiao
    Geng, Xiumei
    Niu, Chaoqun
    Zhang, Jingjing
    Shan, Meixia
    Zhang, Yatao
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 356
  • [4] Membranes for CO2 /CH4 and CO2/N2 Gas Separation
    Chawla, Muhammad
    Saulat, Hammad
    Khan, Muhammad Masood
    Khan, Muhammad Mahmood
    Rafiq, Sikander
    Cheng, Linjuan
    Iqbal, Tanveer
    Rasheed, M. Imran
    Farooq, Muhammad Zohaib
    Saeed, Muhammad
    Ahmad, Nasir M.
    Niazi, Muhammad Bilal Khan
    Saqib, Sidra
    Jamil, Farrukh
    Mukhtar, Ahmad
    Muhammad, Nawshad
    CHEMICAL ENGINEERING & TECHNOLOGY, 2020, 43 (02) : 184 - 199
  • [5] Amine-containing polymer/zeolite Y composite membranes for CO2/N2 separation
    Chen, Yuanxin
    Zhao, Lin
    Wang, Bo
    Dutta, Prabir
    Ho, W. S. Winston
    JOURNAL OF MEMBRANE SCIENCE, 2016, 497 : 21 - 28
  • [6] SPEEK membranes by incorporation of NaY zeolite for CO2/N2 separation
    Wang, Yonghong
    Zhou, Yi
    Zhang, Xinru
    Gao, Yin
    Li, Jinping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 275
  • [7] Comments on the Origins of N2/CO2 Selectivity of Gas Separation Membranes
    Kumar, Parveen
    Kim, Sangil
    Ida, Junichi
    Guliants, Vadim V.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (07) : 3702 - 3702
  • [8] Exploring the effect of fluorinated anions on the CO2/N2 separation of supported ionic liquid membranes
    Gouveia, Andreia S. L.
    Tome, Liliana C.
    Lozinskaya, Elena I.
    Shaplov, Alexander S.
    Vygodskii, Yakov S.
    Marrucho, Isabel M.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2017, 19 (42) : 28876 - 28884
  • [9] The advancements in mixed matrix membranes containing functionalized MOFs and 2D materials for CO2 /N2 separation and CO2 /CH4 separation
    Li, Guoqiang
    Kujawa, Joanna
    Knozowska, Katarzyna
    Kareiva, Aivaras
    Favre, Eric
    Castel, Christophe
    Kujawski, Wojciech
    CARBON CAPTURE SCIENCE & TECHNOLOGY, 2024, 13
  • [10] Silica supported SAPO-34 membranes for CO2/N2 separation
    Makertihartha, I. G. B. N.
    Kencana, Kevin S.
    Dwiputra, Theodorus R.
    Khoiruddin, K.
    Mukti, Rino R.
    Wenten, I. G.
    MICROPOROUS AND MESOPOROUS MATERIALS, 2020, 298